Full Text:   <262>

CLC number: 

On-line Access: 2023-09-11

Received: 2023-07-10

Revision Accepted: 2023-08-23

Crosschecked: 0000-00-00

Cited: 0

Clicked: 468

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 1998 Vol.-1 No.-1 P.

http://doi.org/10.1631/jzus.B2300479


Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of HBX-transfected hepatic stellate cells


Author(s):  Hongyi LIU, Yuanyuan ZHOU, Peng GUO, Xiongwei ZHENG, Weibin CHEN, Shichao ZHANG, Yu FU, Xu ZHOU, Zheng WAN, Bin ZHAO, Yilin ZHAO

Affiliation(s):  Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.; more

Corresponding email(s):   15959223830@163.com, zyllbz@gmail.com

Key Words:  Composite bilayer bionic blood vessels, Extracellular matrix (ECM), Hepatic stellate cells (HSCs), Hepatitis B viral X gene (HBX), Mechanical force


Hongyi LIU, Yuanyuan ZHOU, Peng GUO, Xiongwei ZHENG, Weibin CHEN, Shichao ZHANG, Yu FU, Xu ZHOU, Zheng WAN, Bin ZHAO, Yilin ZHAO. Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of HBX-transfected hepatic stellate cells[J]. Journal of Zhejiang University Science B, 1998, -1(-1): .

@article{title="Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of HBX-transfected hepatic stellate cells",
author="Hongyi LIU, Yuanyuan ZHOU, Peng GUO, Xiongwei ZHENG, Weibin CHEN, Shichao ZHANG, Yu FU, Xu ZHOU, Zheng WAN, Bin ZHAO, Yilin ZHAO",
journal="Journal of Zhejiang University Science B",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300479"
}

%0 Journal Article
%T Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of HBX-transfected hepatic stellate cells
%A Hongyi LIU
%A Yuanyuan ZHOU
%A Peng GUO
%A Xiongwei ZHENG
%A Weibin CHEN
%A Shichao ZHANG
%A Yu FU
%A Xu ZHOU
%A Zheng WAN
%A Bin ZHAO
%A Yilin ZHAO
%J Journal of Zhejiang University SCIENCE B
%V -1
%N -1
%P
%@ 1673-1581
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300479

TY - JOUR
T1 - Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of HBX-transfected hepatic stellate cells
A1 - Hongyi LIU
A1 - Yuanyuan ZHOU
A1 - Peng GUO
A1 - Xiongwei ZHENG
A1 - Weibin CHEN
A1 - Shichao ZHANG
A1 - Yu FU
A1 - Xu ZHOU
A1 - Zheng WAN
A1 - Bin ZHAO
A1 - Yilin ZHAO
J0 - Journal of Zhejiang University Science B
VL - -1
IS - -1
SP -
EP -
%@ 1673-1581
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300479


Abstract: 
Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X gene (HBX) for simulating the process of HBV virus infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE