Full Text:   <2662>

Summary:  <59>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-07-28

Received: 2024-01-30

Revision Accepted: 2024-05-09

Crosschecked: 2025-07-28

Cited: 0

Clicked: 1026

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bomin SUN

https://orcid.org/0000-0001-5931-2197

Shikun ZHAN

https://orcid.org/0000-0001-8769-8760

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.7 P.694-707

http://doi.org/10.1631/jzus.B2400048


Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys


Author(s):  Xin LV, Jie LIU, Shuo MA, Yuhan WANG, Yixin PAN, Xian QIU, Yu CAO, Bomin SUN, Shikun ZHAN

Affiliation(s):  Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; more

Corresponding email(s):   shikun_zhan@hotmail.com, sbm11224@rjh.com.cn

Key Words:  Amphetamine, Sleep stage, Slow oscillation (SO), Delta oscillation, Addiction, Electroencephalogram (EEG)


Xin LV, Jie LIU, Shuo MA, Yuhan WANG, Yixin PAN, Xian QIU, Yu CAO, Bomin SUN, Shikun ZHAN. Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys[J]. Journal of Zhejiang University Science B, 2025, 26(7): 694-707.

@article{title="Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys",
author="Xin LV, Jie LIU, Shuo MA, Yuhan WANG, Yixin PAN, Xian QIU, Yu CAO, Bomin SUN, Shikun ZHAN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="7",
pages="694-707",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400048"
}

%0 Journal Article
%T Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys
%A Xin LV
%A Jie LIU
%A Shuo MA
%A Yuhan WANG
%A Yixin PAN
%A Xian QIU
%A Yu CAO
%A Bomin SUN
%A Shikun ZHAN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 7
%P 694-707
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400048

TY - JOUR
T1 - Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys
A1 - Xin LV
A1 - Jie LIU
A1 - Shuo MA
A1 - Yuhan WANG
A1 - Yixin PAN
A1 - Xian QIU
A1 - Yu CAO
A1 - Bomin SUN
A1 - Shikun ZHAN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 7
SP - 694
EP - 707
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400048


Abstract: 
Abuse of amphetamine-based stimulants is a primary public health concern. Recent studies have underscored a troubling escalation in the inappropriate use of prescription amphetamine-based stimulants. However, the neurophysiological mechanisms underlying the impact of acute methamphetamine exposure (AME) on sleep homeostasis remain to be explored. This study employed non-human primates and electroencephalogram (EEG) sleep staging to evaluate the influence of AME on neural oscillations. The primary focus was on alterations in spindles, delta oscillations, and slow oscillations (SOs) and their interactions as conduits through which AME influences sleep stability. AME predominantly diminishes sleep-spindle waves in the non-rapid eye movement 2 (NREM2) stage, and impacts SOs and delta waves differentially. Furthermore, the competitive relationships between SO/delta waves nesting with sleep spindles were selectively strengthened by methamphetamine. Complexity analysis also revealed that the SO-nested spindles had lost their ability to maintain sleep depth and stability. In summary, this finding could be one of the intrinsic electrophysiological mechanisms by which AME disrupted sleep homeostasis.

甲基苯丙胺急性暴露通过影响慢波与delta振荡的竞争性耦合作用破坏恒河猴睡眠稳态

吕鑫1,2,刘杰1,2,马硕1,2,王宇涵1,2,潘宜新1,2,邱娴3,4,曹昱5,孙伯民1,2,占世坤1,2
1上海交通大学医学院附属瑞金医院功能神经外科中心,中国上海市,200025
2上海交通大学医学院瑞金医院神经外科,中国上海市,200025
3上海交通大学医学院附属瑞金医院护理部,中国上海市,200025
4上海交通大学护理学院,中国上海市,200025
5山东省精神卫生中心,中国济南市,250014
摘要:苯丙胺类兴奋剂的滥用是全球重要的公共健康风险之一。近期研究指出,处方安非他命类药物的滥用呈现显著上升趋势。然而,急性甲基苯丙胺暴露(AME)影响睡眠稳态的神经生理机制仍有待探索。本研究采用非人灵长类动物(恒河猴)为模型,利用脑电图(EEG)睡眠分期的方法评估AME对神经振荡的调控作用,并重点研究AME对睡眠纺锤波、delta波和慢波(SO)的差异性影响,及其在睡眠稳定性调控中的相互作用机制。AME显著抑制非快速眼动2期(NREM2)的睡眠纺锤波,并对SO和delta波具有差异性调控作用。此外,甲基苯丙胺特异性增强了SO和delta波与睡眠纺锤波的嵌套关系;复杂度特征分析发现,SO嵌套的纺锤波维持睡眠深度和稳定性的生理功能也出现显著损伤。上述结果在神经振荡网络层面上阐述了AME导致睡眠稳态破坏的内在电生理机制。

关键词:安非他命;睡眠分期;慢波振荡;Delta振荡;脑电图

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AndersenML, DiazMP, MurnaneKS, et al., 2013. Effects of methamphetamine self-administration on actigraphy-based sleep parameters in rhesus monkeys. Psychopharmacology (Berl), 227(1):101-107.

[2]BainganaF, al'AbsiM, BeckerAE, et al., 2015. Global research challenges and opportunities for mental health and substance-use disorders. Nature, 527(7578):S172-S177.

[3]BandarabadiM, HerreraCG, GentTC, et al., 2020. A role for spindles in the onset of rapid eye movement sleep. Nat Commun, 11:5247.

[4]BassettiCLA, AdamantidisA, BurdakovD, et al., 2019. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol, 15(9):519-539.

[5]BerroLF, AndersenML, TufikS, et al., 2016. Actigraphy-based sleep parameters during the reinstatement of methamphetamine self-administration in rhesus monkeys. Exp Clin Psychopharmacol, 24(2):142-146.

[6]BerroLF, OvertonJS, RowlettJK, 2022. Methamphetamine-induced sleep impairments and subsequent slow-wave and rapid eye movement sleep rebound in male rhesus monkeys. Front Neurosci, 16:866971.

[7]BrockmannPE, BruniO, Kheirandish-GozalL, et al., 2020. Reduced sleep spindle activity in children with primary snoring. Sleep Med, 65:142-146.

[8]BrodtS, InostrozaM, NiethardN, et al., 2023. Sleep—a brain-state serving systems memory consolidation. Neuron, 111(7):1050-1075.

[9]CastelnovoA, D'AgostinoA, CasettaC, et al., 2016. Sleep spindle deficit in schizophrenia: contextualization of recent findings. Curr Psychiatry Rep, 18(8):72.

[10]ChenC, WangK, BelkacemAN, et al., 2023. A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects. Front Neurosci, 17:1110320.

[11]ComerSD, HartCL, WardAS, et al., 2001. Effects of repeated oral methamphetamine administration in humans. Psychopharmacology (Berl), 155(4):397-404.

[12]CruickshankCC, DyerKR, 2009. A review of the clinical pharmacology of methamphetamine. Addiction, 104(7):1085-1099.

[13]DaleyJT, TurnerRS, FreemanA, et al., 2006. Prolonged assessment of sleep and daytime sleepiness in unrestrained Macaca mulatta. Sleep, 29(2):221-231.

[14]DiekelmannS, BornJ, 2010. The memory function of sleep. Nat Rev Neurosci, 11(2):114-126.

[15]FazelS, LångströmN, HjernA, et al., 2009. Schizophrenia, substance abuse, and violent crime. JAMA, 301(19):2016-2023.

[16]GirardeauG, Lopes-Dos-SantosV, 2021. Brain neural patterns and the memory function of sleep. Science, 374(6567):560-564.

[17]HahnMA, HeibD, SchabusM, et al., 2020. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife, 9:e53730.

[18]HedgesDM, ObrayJD, YorgasonJT, et al., 2018. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology, 43(6):1405-1414.

[19]HelfrichRF, ManderBA, JagustWJ, et al., 2018. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97(1):221-230.e4.

[20]HerbeckDM, BrechtML, LovingerK, 2015. Mortality, causes of death, and health status among methamphetamine users. J Addict Dis, 34(1):88-100.

[21]HerrmannES, JohnsonPS, BrunerNR, et al., 2017. Morning administration of oral methamphetamine dose-dependently disrupts nighttime sleep in recreational stimulant users. Drug Alcohol Depend, 178:291-295.

[22]HouFZ, ZhangLL, QinBK, et al., 2021. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep, 44(4):zsaa226.

[23]IshikawaA, SakaiK, MakiT, et al., 2017. Investigation of sleep-wake rhythm in non-human primates without restraint during data collection. Exp Anim, 66(1):51-60.

[24]JoechnerAK, HahnMA, GruberG, et al., 2023. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife, 12:e83565.

[25]KaulenL, SchwabedalJTC, SchneiderJ, et al., 2022. Advanced sleep spindle identification with neural networks. Sci Rep, 12:7686.

[26]KeshmiriS, 2020. Entropy and the brain: an overview. Entropy (Basel), 22(9):917.

[27]KimJ, GulatiT, GangulyK, 2019. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell, 179(2):514-526.e13.

[28]KimJ, JoshiA, FrankL, et al., 2023. Cortical-hippocampal coupling during manifold exploration in motor cortex. Nature, 613(7942):103-110.

[29]KjaerbyC, AndersenM, HauglundN, et al., 2022. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci, 25(8):‍1059-1070.

[30]LiYD, DongHB, LiF, et al., 2017. Microstructures in striato-thalamo-orbitofrontal circuit in methamphetamine users. Acta Radiol, 58(11):1378-1385.

[31]LiangXY, XiongJL, CaoZT, et al., 2021. Decreased sample entropy during sleep-to-wake transition in sleep apnea patients. Physiol Meas, 42(4):044001.

[32]LvX, ZhangXL, ZhaoQ, et al., 2022. Acute stress promotes brain oscillations and hippocampal-cortical dialog in emotional processing. Biochem Biophys Res Commun, 598:55-61.

[33]MaY, ShiWB, PengCK, et al., 2018. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med Rev, 37:85-93.

[34]MaingretN, GirardeauG, TodorovaR, et al., 2016. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci, 19(7):959-964.

[35]MalkaniRG, ZeePC, 2020. Brain stimulation for improving sleep and memory. Sleep Med Clin, 15(1):101-115.

[36]McElroySL, 2017. Pharmacologic treatments for binge-eating disorder. J Clin Psychiatry, 78(Suppl 1):14-19.

[37]MendesRAV, ZachariasLR, RuggieroRN, et al., 2021. Hijacking of hippocampal-cortical oscillatory coupling during sleep in temporal lobe epilepsy. Epilepsy Behav, 121:106608.

[38]MiyamotoD, HiraiD, MurayamaM, 2017. The roles of cortical slow waves in synaptic plasticity and memory consolidation. Front Neural Circuits, 11:92.

[39]MoralesAM, KohnoM, RobertsonCL, et al., 2015. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users. Mol Psychiatry, 20(6):764-771.

[40]MuehlrothBE, SanderMC, FandakovaY, et al., 2019. Precise slow oscillation-spindle coupling promotes memory consolidation in younger and older adults. Sci Rep, 9:1940.

[41]MurnaneKS, AndersenML, RiceKC, et al., 2013. Selective serotonin 2A receptor antagonism attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. J Sleep Res, 22(5):581-588.

[42]NunesEV, KunzK, GalanterM, et al., 2020. Addiction psychiatry and addiction medicine: the evolution of addiction physician specialists. Am J Addict, 29(5):390-400.

[43]PaulusMP, StewartJL, 2020. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: a review. JAMA Psychiatry, 77(9):959-966.

[44]PerezAY, KirkpatrickMG, GundersonEW, et al., 2008. Residual effects of intranasal methamphetamine on sleep, mood, and performance. Drug Alcohol Depend, 94(1-3):258-262.

[45]PosnerJ, PolanczykGV, Sonuga-BarkeE, 2020. Attention-deficit hyperactivity disorder. Lancet, 395(10222):450-462.

[46]RommelN, RohlederNH, WagenpfeilS, et al., 2015. Evaluation of methamphetamine-associated socioeconomic status and addictive behaviors, and their impact on oral health. Addict Behav, 50:182-187.

[47]RuchS, SchmidigFJ, KnüselL, et al., 2022. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage, 264:119682.

[48]SathyanarayanaA, el AtracheR, JacksonM, et al., 2021. Measuring the effects of sleep on epileptogenicity with multifrequency entropy. Clin Neurophysiol, 132(9):2012-2018.

[49]SchönauerM, PöhlchenD, 2018. Sleep spindles. Curr Biol, 28(19):R1129-R1130.

[50]ShalabyAS, BahananAO, AlshehriMH, et al., 2022. Sleep deprivation & amphetamine induced psychosis. Psychopharmacol Bull, 52(3):31-40.

[51]SunHQ, ChenHM, YangFD, et al., 2014. Epidemiological trends and the advances of treatments of amphetamine-type stimulants (ATS) in China. Am J Addict, 23(3):313-317.

[52]TroynikovO, WatsonCG, NawazN, 2018. Sleep environments and sleep physiology: a review. J Therm Biol, 78:192-203.

[53]van Emmerik-van OortmerssenK, van de GlindG, van den BrinkW, et al., 2012. Prevalence of attention-deficit hyperactivity disorder in substance use disorder patients: a meta-analysis and meta-regression analysis. Drug Alcohol Depend, 122(1-2):11-19.

[54]Vivolo-KantorAM, HootsBE, SethP, et al., 2020. Recent trends and associated factors of amphetamine-type stimulant overdoses in emergency departments. Drug Alcohol Depend, 216:108323.

[55]VolkowND, ChangLD, WangGJ, et al., 2001. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry, 158(3):383-389.

[56]VrajováM, ŠlamberováR, HoschlC, et al., 2021. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep, 44(6):zsab001.

[57]WartonFL, MeintjesEM, WartonCMR, et al., 2018. Prenatal methamphetamine exposure is associated with reduced subcortical volumes in neonates. Neurotoxicol Teratol, 65:51-59.

[58]WengYY, LeiX, YuJ, 2020. Sleep spindle abnormalities related to Alzheimer’s disease: a systematic mini-review. Sleep Med, 75:37-44.

[59]WhitefordHA, DegenhardtL, RehmJ, et al., 2013. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet, 382(9904):1575-1586.

[60]WinslowBT, VoorheesKI, PehlKA, 2007. Methamphetamine abuse. Am Fam Physician, 76(8):1169-1174.

[61]ZhangZY, CampbellIG, DhayagudeP, et al., 2021. Longitudinal analysis of sleep spindle maturation from childhood through late adolescence. J Neurosci, 41(19):4253-4261.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE