CLC number: TH77
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-05-07
Cited: 3
Clicked: 8120
Cheng Jin, Si-ping Chen, Zheng-di Qin, Tian-fu Wang. A new scheme of coded ultrasound using Golay codes[J]. Journal of Zhejiang University Science C, 2010, 11(6): 476-480.
@article{title="A new scheme of coded ultrasound using Golay codes",
author="Cheng Jin, Si-ping Chen, Zheng-di Qin, Tian-fu Wang",
journal="Journal of Zhejiang University Science C",
volume="11",
number="6",
pages="476-480",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910353"
}
%0 Journal Article
%T A new scheme of coded ultrasound using Golay codes
%A Cheng Jin
%A Si-ping Chen
%A Zheng-di Qin
%A Tian-fu Wang
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 6
%P 476-480
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910353
TY - JOUR
T1 - A new scheme of coded ultrasound using Golay codes
A1 - Cheng Jin
A1 - Si-ping Chen
A1 - Zheng-di Qin
A1 - Tian-fu Wang
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 6
SP - 476
EP - 480
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910353
Abstract: golay codes are the most practical code in coded ultrasound imaging systems. But the trade-off for perfect range sidelobe cancellation is the requirement for two firings, thus resulting in motion-dependent decoding errors. In view of this, we propose a new scheme using the simultaneous emission of code pairs. The code pair is allocated to different elements of an aperture and transmitted simultaneously. The process of separating the code pair from the echo received is based on the orthogonality of the code pair. At last the autocorrelation functions of the individual golay codes are added together. The simultaneous emission of code pairs instead of two firings recovers the frame rate loss, and eliminates the motion-dependent decoding error. Our theoretical analysis and simulations show that the scheme can be used to eliminate the tissue motion effects.
[1]Cannon, C., Hannah, J., McLaughlin, S., 2008. Mirrored Motion Compensation for Complementary-Coded Ultrasonic Imaging. Ultrasonics Symp., p.467-470.
[2]Chiao, R.Y., Hao, X., 2005. Coded excitation for diagnostic ultrasound: a system developer’s perspective. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52(2):160-170.
[3]Chiao, R.Y., Thomas, L.J., 2000. Method and Apparatus for Ultrasonic Beamforming Using Orthogonal Complementary Sets. US Patent 6 113 545.
[4]Cowell, D.M.J., Freear, S., 2008. Quinary excitation method for pulse compression ultrasound measurements. Ultrasonics, 48(2):98-108.
[5]Dokovic, D.Z., 1998. Equivalence classes and representatives of Golay sequences. Discr. Math., 189(1-3):79-93.
[6]Gran, F., Jensen, J.A., 2008. Spatial encoding using code division for fast ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55(1):12-23.
[7]Jensen, J.A., 1996. Estimation of Blood Velocities Using Ultrasound: a Signal Processing Approach. Cambridge University Press, New York.
[8]Kim, B.H., Kim, T.H., Song, T.K., 2002. Generation of Mutually Orthogonal Polyphase Complementary Sequences for Use in Ultrasound Imaging. IEEE Ultrasonics Symp. Proc., p.1693-1696.
[9]Leavens, C., Williams, R., Foster, F.S., Burns, P.N., Sherar, M.D., 2007a. Golay pulse encoding for microbubble contrast imaging in ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54(10):2082-2090.
[10]Leavens, C., Burns, P.N., Sherar, M.D., 2007b. Fast b-flow imaging: a method for improving frame rate in Golay coded b-flow imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54(11):2272-2282.
[11]Lewandowski, M., Nowicki, A., 2008. High frequency coded imaging system with RF software signal processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55(8):1878-1882.
[12]Misaridis, T.X., Jensen, J.A., 2005. Use of modulated excitation signals in medical ultrasound. Part III: high frame rate imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52(2):208-219.
[13]O′Donnell, M., 1992. Coded excitation for synthetic aperture ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39(3):341-351.
[14]Pezeshki, A., Calderbank, A.R., Moran, W., Howard, S.D., 2008. Doppler resilient Golay complementary waveforms. IEEE Trans. Inform. Theory, 54(9):4254-4266.
[15]Shen, J., Ebbini, E.S., 1996. A new coded-excitation ultrasound imaging system. I. basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 43(1):131-140.
[16]Takeuchi, Y., 1979. An investigation of a spread energy method for medical ultrasound systems-Part one: theory and investigation. Ultrasonics, 17(4):175-182.
[17]Welch, L.R., Fox, M.D., 1998. Practical spread spectrum pulse compression for ultrasonic tissue imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 45(2):349-355.
[18]Zhao, H., Mo, L.Y.L., Gao, S.K., 2007. Barker-coded ultrasound color flow imaging: theoretical and practical design considerations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54(2):319-331.
Open peer comments: Debate/Discuss/Question/Opinion
<1>