Full Text:   <3342>

CLC number: TP212

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2012-12-14

Cited: 4

Clicked: 6953

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2013 Vol.14 No.1 P.65-74

http://doi.org/10.1631/jzus.C1200251


Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers


Author(s):  Jian-qiang Han, Ri-sheng Feng, Yan Li, Sen-lin Li, Qing Li

Affiliation(s):  College of Mechanical & Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Corresponding email(s):   hjqsmx@sina.com

Key Words:  Resonant accelerometer, Maskless etching, Bulk micromachining technology, Microelectromechanical system (MEMS), Microsensor


Share this article to: More <<< Previous Article|

Jian-qiang Han, Ri-sheng Feng, Yan Li, Sen-lin Li, Qing Li. Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers[J]. Journal of Zhejiang University Science C, 2013, 14(1): 65-74.

@article{title="Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers",
author="Jian-qiang Han, Ri-sheng Feng, Yan Li, Sen-lin Li, Qing Li",
journal="Journal of Zhejiang University Science C",
volume="14",
number="1",
pages="65-74",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200251"
}

%0 Journal Article
%T Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers
%A Jian-qiang Han
%A Ri-sheng Feng
%A Yan Li
%A Sen-lin Li
%A Qing Li
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 1
%P 65-74
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200251

TY - JOUR
T1 - Microfabrication technology for non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers
A1 - Jian-qiang Han
A1 - Ri-sheng Feng
A1 - Yan Li
A1 - Sen-lin Li
A1 - Qing Li
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 1
SP - 65
EP - 74
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200251


Abstract: 
This paper presents the design principles and fabrication techniques for simultaneously forming non-coplanar resonant beams and crab-leg supporting beams of dual-axis bulk micromachined resonant accelerometers by masked-maskless combined anisotropic etching. Four resonant beams are located at the surface of a silicon substrate, whereas the gravity centre of a proof mass lies within the neutral plane of four crab-leg supporting beams on the same substrate. Compared with early reported mechanical structures, the simple structure not only eliminates the bending moments caused by in-plane acceleration, and thereby avoiding the rotation of the proof mass, but also providing sufficiently small rigidity to X and Y axes accelerations, potentially leading to a large sensitivity for measuring the in-plane acceleration.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bao, M., Burrer, C., Esteve, J., Bausells, J., Marco, S., 1993. Etching front control of <110> strips for corner compensation. Sens. Actuat. A, 37-38:727-732.

[2]Burns, D.W., Horning, R.D., Herb, W.R., Zook, J.D., Guckel, H., 1996. Sealed-cavity resonant microbeam accelerometer. Sens. Actuat. A, 53(1-3):249-255.

[3]Burrer, C., Esteve, J., Lora-Tamayo, E., 1996. Resonant silicon accelerometers in bulk micromachining technology—an approach. J. Microelectromech. Syst., 5(2):122-130.

[4]Chen, D., Wu, Z., Liu, L., Shi, X., Wang, J., 2009. An electromagnetically excited silicon nitride beam resonant accelerometer. Sensors, 9(3):1330-1338.

[5]Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2009. A New Two-Beam Differential Resonant Micro Accelerometer. IEEE Conf. on Sensors, p.158-163.

[6]Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2010. A High Sensitivity Uniaxial Resonant Accelerometer. IEEE 23rd Int. Conf. on Micro Electro Mechanical Systems, p.260-263.

[7]Comi, C., Corigliano, A., Langfelder, G., Longoni, A., Tocchio, A., Simoni, B., 2011. A New Biaxial Silicon Resonant Micro Accelerometer. IEEE 24th Int. Conf. on Micro Electro Mechanical Systems, p.529-533.

[8]Fedder, G.K., 1994. Simulation of Microelectromechanical Systems. PhD Thesis, University of California, Berkeley.

[9]Ferrari, V., Ghisla, A., Marioli, D., Taroni, A., 2005. Silicon resonant accelerometer with electronic compensation of input-output cross-talk. Sens. Actuat. A, 123-124:258-266.

[10]Huang, P.S., Ren, T.L., Lou, Q.W., Liu, J.S., Liu, L.T., Li, Z.J., 2003. Design of a triaxial piezoelectric accelerometer. Integr. Ferroelectr., 56(1):1115-1122.

[11]Li, X.X., Bao, M.H., Shen, S.Q., 1996. Maskless etching of three-dimensional silicon structures in KOH. Sens. Actuat. A, 57(1):47-52.

[12]Manut, A., Syono, M.I., 2006. Effects of Mechanical Geometries on Resonance Sensitivity of MEMS Out-of-Plane Accelerometer. IEEE Int. Conf. on Semiconductor Electronics, p.25-28.

[13]Mayer, G.K., Offereings, H.L., Sandmaier, H., Kühl, K., 1990. Fabrication of non-underetched convex corner in anisotropic etching of (100) silicon in aqueous KOH with respect to novel micromechanical elements. J. Electroch. Soc., 137(12):3947-3951.

[14]Olsson, R.H., Wojciechowski, K.E., Baker, M.S., Tuck, M.R., Fleming, J.G., 2009. Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. J. Microelectromech. Syst., 18(3):671-678.

[15]Pinto, D., Mercier, D., Kharrat, C., Colinet, E., Nguyen, V., Reig, B., Hentz, S., 2009. A Small and High Sensitivity Resonant Accelerometer. Proc. Eurosensors 23rd Conf. on Procedia Chemistry, p.536-539.

[16]Puers, B., Sansen, W., 1990. Compensation structures for convex corner micromachining in silicon. Sens. Actuat. A, 23(1-3):1036-1041.

[17]Qiu, A., Su, Y., Zhu, X., Shi, Q., 2009. Bulk-Micromachined Silicon Resonant Accelerometer. IEEE Int. Conf. on Information and Automation, p.1289-1292.

[18]Roessig, T.A., Howe, R.T., Pisano, A.P., Smith, J.H., 1997. Surface-Micromachined Resonant Accelerometer. Proc. of Int. Solid State Sensors and Actuators Conf., p.859-862.

[19]Seok, S., Chun, K., 2006. Inertial-grade in-plane resonant silicon accelerometer. Electr. Lett., 42(19):1092-1094.

[20]Seok, S., Seong, S., Lee, B., Kim, J., Chun, K., 2002. A High Performance Mixed Micromachined Differential Resonant Accelerometer. Proc. IEEE Sensors, p.1058-1063.

[21]Seshia, A.A., Palaniapan, M., Roessig, T.A., Howe, R.T., Gooch, R.W., Schimert, T.R., Montague, S., 2002. A vacuum packaged surface. J. Microelectromech. Syst., 11(6):784-793.

[22]Su, S.X.P., Yang, H.S., Agogino, A.M., 2005. A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology. IEEE Sens. J., 5(6):1214-1223.

[23]Wang, J., Shang, Y., Tu, S., Liu, L., Chen, D., 2011. Micro-Machined Resonant Accelerometer with High Sensitivity. 6th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, p.527-530.

[24]Wu, X.P., Ko, W.H., 1989. Compensating corner undercutting in anisotropic etching of (100) silicon. Sens. Actuat., 18(2):207-215.

[25]Zhang, Q., Liu, L., Li, Z., 1996. A new approach to convex corner compensation for anisotropic etching of (100) Si in KOH. Sens. Actuat. A, 56(3):251-254.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE