CLC number: TM31
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-11-18
Cited: 6
Clicked: 8720
Yi-peng Song, Heng Nian. Comparison of resonant current regulators for DFIG during grid voltage distortion[J]. Journal of Zhejiang University Science C, 2013, 14(12): 953-965.
@article{title="Comparison of resonant current regulators for DFIG during grid voltage distortion",
author="Yi-peng Song, Heng Nian",
journal="Journal of Zhejiang University Science C",
volume="14",
number="12",
pages="953-965",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300125"
}
%0 Journal Article
%T Comparison of resonant current regulators for DFIG during grid voltage distortion
%A Yi-peng Song
%A Heng Nian
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 12
%P 953-965
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300125
TY - JOUR
T1 - Comparison of resonant current regulators for DFIG during grid voltage distortion
A1 - Yi-peng Song
A1 - Heng Nian
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 12
SP - 953
EP - 965
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300125
Abstract: We investigate two different kinds of resonant current regulators for a doubly fed induction generator (DFIG) under distorted grid voltage conditions: proportional integral resonant (PIR) regulator with traditional resonant part and vector proportional integral (VPI) regulator with VPI resonant part. Based on the mathematical model of DFIG under distorted grid voltage, the transfer function and frequency response characteristics of the two current regulators are analyzed and compared. The superiority of the VPI current regulator over the PIR regulator is pointed out, and the influence of discretization methods on the performance of the resonant current regulator is studied. All the results are validated by MATLAB simulation and experiments.
[1]Arbi, J., Ghorbal, M.J.B., Slama-Belkhodja, I., Charaabi, L., 2009. Direct virtual torque control for doubly fed induction generator grid connection. IEEE Trans. Ind. Electron., 56(10):4163-4173.
[2]Bojoi, R.I., Griva, G., Bostan, V., Guerriero, M., Farina, F., Profumo, F., 2005. Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Trans. Power Electron., 20(6):1402-1412.
[3]Etxeberria-Otadui, I., de Heredia, A.L., Gaztañaga, H., Bacha, S., Raúl Reyero, M.R., 2006. A single synchronous frame hybrid (SSFH) multifrequency controller for power active filters. IEEE Trans. Ind. Electron., 53(5):1640-1648.
[4]Fukuda, S., Imamura, R., 2005. Application of a sinusoidal internal model to current control of three-phase utility-interface converters. IEEE Trans. Ind. Electron., 52(2):420-426.
[5]Gambica, 2005. Managing Harmonics—a Guide to ENA Engineering Recommendation G5/4 – 1. The Gambica Association Limited, London.
[6]Hu, J.B., He, Y.K., 2009. Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions. IEEE Trans. Energy Conv., 24(4):905-915.
[7]Hu, J.B., He, Y.K., Xu, L., Williams, B.W., 2009. Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Trans. Ind. Electron., 56(2):439-451.
[8]Hu, J.B., He, Y.K., Xu, L., 2010. Improved rotor current control of wind turbine driven doubly-fed induction generators during network voltage unbalance. Electr. Power Syst. Res., 80(7):847-856.
[9]Hu, J.B., Nian, H., Xu, H.H., He, Y.K., 2011. Dynamic modeling and improved control of DFIG under distorted grid voltage conditions. IEEE Trans. Energy Conv., 26(1):163-175.
[10]IEEE Standard 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE, New York.
[11]Iwanski, G., Koczara, W., 2008. DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans. Ind. Electron., 55(8):3047-3054.
[12]Lascu, C., Asiminoaei, L., Boldea, I., Blaabjerg, F., 2007. High performance current controller for selective harmonic compensation in active power filters. IEEE Trans. Power Electron., 22(5):1826-1835.
[13]Lascu, C., Asiminoaei, L., Boldea, I., Blaabjerg, F., 2009. Frequency response analysis of current controllers for selective harmonic compensation in active power filters. IEEE Trans. Ind. Electron., 56(2):337-347.
[14]Li, Z.X., Li, Y.H., Wang, P., Zhu, H.B., Liu, C.W., Gao, F.Q., 2010. Single-loop digital control of high-power 400-Hz ground power unit for airplanes. IEEE Trans. Ind. Electron., 57(2):532-543.
[15]Liu, C.J., Blaabjerg, F., Chen, W.J., Xu, D.H., 2012. Stator current harmonic control with resonant controller for doubly fed induction generator. IEEE Trans. Power Electron., 27(7):3207-3220.
[16]Liu, C.J., Xu, D.H., Zhu, N., Blaabjerg, F., Chen, M., 2013. DC-voltage fluctuation elimination through a DC-capacitor current control for DFIG converters under unbalanced grid voltage conditions. IEEE Trans. Power Electron., 28(7):3206-3218.
[17]Luna, A., Lima, F.K.A., Santos, D., Rodríguez, P., Watanabe, E.H., Arnaltes, S., 2011. Simplified modeling of a DFIG for transient studies in wind power applications. IEEE Trans. Ind. Electron., 58(1):9-20.
[18]Muller, S., Deicke, M., de Doncker, R.W., 2002. Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag., 8(3):26-33.
[19]Nian, H., Song, Y.P., 2014. Direct power control of doubly fed induction generator under distorted grid voltage. IEEE Trans. Power Electron., 29(2):894-905.
[20]Pena, R., Cardenas, R., Reyes, E., Clare, J., Wheeler, P., 2011. Control of a doubly fed induction generator via an indirect matrix converter with changing DC voltage. IEEE Trans. Ind. Electron., 58(10):4664-4674.
[21]Ramos, C.J., Martins, A.P., Carvalho, A.S., 2007. Rotor Current Controller with Voltage Harmonics Compensation for a DFIG Operating under Unbalanced and Distorted Stator Voltage. 33rd Annual Conf. of the IEEE Industrial Electronics Society, p.1287-1292.
[22]Singh, G.K., 2009. Power system harmonics research: a survey. Eur. Trans. Electr. Power, 19(2):151-172.
[23]Xu, L., Wang, Y., 2007. Dynamic modeling and control of DFIG based wind turbines under unbalanced network conditions. IEEE Trans. Power Syst., 22(1):314-323.
[24]Xu, L., Zhi, D.W., Williams, B.W., 2009. Predictive current control of doubly fed induction generators. IEEE Trans. Ind. Electron., 56(10):4143-4153.
[25]Yepes, A.G., Freijedo, F.D., Doval-Gandoy, J., López, O., Malvar, J., Fernandez-Comesaña, P., 2010. Effects of discretization methods on the performance of resonant controllers. IEEE Trans. Power Electron., 25(7):1692-1712.
[26]Yuan, X.M., Merk, W., Stemmler, H., Allmeling, J., 2002. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. Ind. Appl., 38(2):523-532.
[27]Zeng, R., Nian, H., Zhou, P., 2010. A Three-Phase Programmable Voltage Sag Generator for Low Voltage Ride-Through Capability Test of Wind Turbine. IEEE Energy Conversion Congress and Exposition, p.305-311.
[28]Zmood, D.N., Holmes, D.G., 2003. Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Trans. Power Electron., 18(3):814-822.
Open peer comments: Debate/Discuss/Question/Opinion
<1>