Full Text:   <4001>

Summary:  <2241>

CLC number: TP3; TU121

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-02-19

Cited: 7

Clicked: 8742

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.3 P.200-210

http://doi.org/10.1631/jzus.C1300177


A two-stage heuristic method for vehicle routing problem with split deliveries and pickups


Author(s):  Yong Wang, Xiao-lei Ma, Yun-teng Lao, Hai-yan Yu, Yong Liu

Affiliation(s):  School of Management, Chongqing Jiaotong University, Chongqing 400074, China; more

Corresponding email(s):   yongwx6@gmail.com, xiaolei@buaa.edu.cn

Key Words:  Vehicle routing problem with split deliveries and pickups (VRPSPDP), Two-stage heuristic method, Hybrid heuristic algorithm, Solomon benchmark datasets


Yong Wang, Xiao-lei Ma, Yun-teng Lao, Hai-yan Yu, Yong Liu. A two-stage heuristic method for vehicle routing problem with split deliveries and pickups[J]. Journal of Zhejiang University Science C, 2014, 15(3): 200-210.

@article{title="A two-stage heuristic method for vehicle routing problem with split deliveries and pickups",
author="Yong Wang, Xiao-lei Ma, Yun-teng Lao, Hai-yan Yu, Yong Liu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="3",
pages="200-210",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300177"
}

%0 Journal Article
%T A two-stage heuristic method for vehicle routing problem with split deliveries and pickups
%A Yong Wang
%A Xiao-lei Ma
%A Yun-teng Lao
%A Hai-yan Yu
%A Yong Liu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 3
%P 200-210
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300177

TY - JOUR
T1 - A two-stage heuristic method for vehicle routing problem with split deliveries and pickups
A1 - Yong Wang
A1 - Xiao-lei Ma
A1 - Yun-teng Lao
A1 - Hai-yan Yu
A1 - Yong Liu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 3
SP - 200
EP - 210
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300177


Abstract: 
The vehicle routing problem (VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups (VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, solomon benchmark datasets and extended solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.

求解集送货可拆分车辆路径问题的两阶段启发式方法

研究目的:集送货可拆分车辆路径问题具有配送和收集需求同时可拆分、客户点需求量可超过单车装载量、客户点被单车访问可超过一次等特点,针对测试该问题的公共数据集寻求有效求解方法,是一项富有挑战性的工作,目前缺乏有效、方便的求解算法。本文探讨求解集送货可拆分车辆路径问题的有效算法。
创新要点:提出两阶段启发式方法,即可行解获取的初始启发式算法和改进初始解的混合启发式算法,为研究车辆路径问题需求拆分和访问次数的松弛提供了有效的求解思路。引用描述该问题实质的逻辑关系模型,结合定义和化简的概念,本文算法为集送货可拆分车辆路径问题的研究,提供了分步计算的实用算法。
方法提亮:组成两阶段启发式方法的各种逻辑关系模型简洁、准确地描述了集送货可拆分车辆路径问题,同时具备可扩展性和可组合性。这些特性的灵活应用,形成本文提出的两阶段优化算法。
重要结论:利用Solomon数据集和可扩展的Solomon数据集进行实验计算,并与禁忌搜索算法(TSA),粒子群算法(PSO)以及并行启发式方法(PHA)比较,结果表明,对于不同规模数据集,本文算法有效节省了总配送成本、提升了平均装载率。

关键词:集送货可拆分的车辆路径问题(VRPSPDP);两阶段启发式方法;混合启发式算法;Solomon数据集

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ai, T.J., Kachitvichyanukul, V., 2009. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res., 36(5):1693-1702.

[2]Archetti, C., Savelsbergh, M.W.P., Speranza, M.G., 2008. To split or not to split: that is the question. Transp. Res. PT E-Logist. Transp., 44(1):114-123.

[3]Baldacci, R., Toth, P., Vigo, D., 2010. Exact algorithms for routing problems under vehicle capacity constraints. Ann. Oper. Res., 175(1):213-245.

[4]Çatay, B., 2010. A new saving-based ant algorithm for the vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl., 37(10):6809-6817.

[5]Chen, A.L., Yang, G.K., Wu, Z.M., 2006. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. J. Zhejiang Univ.-Sci. A, 7(4):607-614.

[6]Chen, J.F., Wu, T.H., 2006. Vehicle routing problem with simultaneous deliveries and pickups. J. Oper. Res. Soc., 57(5):579-587.

[7]Chepuri, K., Homem-de-Mello, T., 2005. Solving the vehicle routing problem with stochastic demands using the cross-entropy method. Ann. Oper. Res., 134(1):153-181.

[8]de Oliveira, H.C.B., Vasconcelos, G.C., 2010. A hybrid search method for the vehicle routing problem with time windows. Ann. Oper. Res., 180(1):125-144.

[9]Dror, M., Trudeau, P., 1989. Savings by split delivery routing. Transp. Sci., 23(2):141-145.

[10]Gajpal, Y., Abad, P., 2009. An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup. Comput. Oper. Res., 36(12):3215-3223.

[11]Gulczynski, D., Golden, B., Wasil, E., 2010. The split delivery vehicle routing problem with minimum delivery amounts. Transp. Res. PT E-Logist. Transp., 46(5):612-626.

[12]Hennig, F., Nygreen, B., Christiansen, M., et al., 2012. Maritime crude oil transportation—a split pickup and split delivery problem. Eur. J. Oper. Res., 218(3):764-774.

[13]Ho, S.C., Haugland, D., 2004. A tabu search heuristic for vehicle routing problem with time windows and split deliveries. Comput. Oper. Res., 31(12):1947-1964.

[14]Hoff, A., Gribkovskaia, I., Laporte, G., et al., 2009. Lasso solution strategies for the vehicle routing problem with pickups and deliveries. Eur. J. Oper. Res., 192(3):755-766.

[15]Jin, M.Z., Liu, K., Bowden, R.O., 2007. A two-stage algorithm with valid inequalities for the split delivery vehicle routing problem. Int. J. Prod. Econ., 105(1):228-242.

[16]Lambert, S., Riopel, D., Abdul-Kader, W., 2011. A reverse logistics decisions conceptual framework. Comput. Ind. Eng., 61(3):561-581.

[17]Lee, C.G., Epelman, M.A., White, C.C.III, et al., 2006. A shortest path approach to the multiple-vehicle routing problem with pick-ups. Transp. Res. PT B-Method., 40(4):265-284.

[18]Li, J.X., Chu, F., Chen, H.X., 2011. Coordination of split deliveries in one-warehouse multi-retailer distribution systems. Comput. Ind. Eng., 60(2):291-301.

[19]Liu, R., Xie, X.L., Augusto, V., et al., 2013. Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. Eur. J. Oper. Res., 230(3):475-486.

[20]Mitra, S., 2005. An algorithm for the generalized vehicle routing problem with backhauling. Asia Pac. J. Oper. Res., 22(2):153-169.

[21]Mitra, S., 2008. A parallel clustering technique for the vehicle routing problem with split deliveries and pickups. J. Oper. Res. Soc., 59(11):1532-1546.

[22]Montané, F.A.T., Galvão, R.D., 2006. A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Comput. Oper. Res., 33(3):595-619.

[23]Moreno, L., de Aragão, M.P., Uchoa, E., 2010. Improved lower bounds for the split delivery vehicle routing problem. Oper. Res. Lett., 38(4):302-306.

[24]Mullaseril, P.A., Dror, M., Leung, J., 1997. Split-delivery routing heuristics in livestock feed distribution. J. Oper. Res. Soc., 48(2):107-116.

[25]Nanry, W.P., Barnes, J.W., 2000. Solving the pickup and delivery problem with time windows using reactive tabu search. Transp. Res. PT B-Method., 34(2):107-121.

[26]Nowak, M., Ergun, O., White, C.C.III, 2009. An empirical study on the benefit of split loads with the pickup and delivery problem. Eur. J. Oper. Res., 198(3):734-740.

[27]Özdamar, L., Demir, O., 2012. A hierarchical clustering and routing procedure for large scale disaster relief logistics planning. Transp. Res. PT E-Logist. Transp., 48(3):591-602.

[28]Rieck, J., Zimmermann, J., 2010. A new mixed integer linear model for a rich vehicle routing problem with docking constraints. Ann. Oper. Res., 181(1):337-358.

[29]Saberi, M., Verbas, İ.Ö., 2012. Continuous approximation model for the vehicle routing problem for emissions minimization at the strategic level. J. Transp. Eng., 138(11):1368-1376.

[30]Sheu, J.B., 2006. A novel dynamic resource allocation model for demand-responsive city logistics distribution operations. Transp. Res. PT E-Logist. Transp., 42(6):445-472.

[31]Sheu, J.B., 2008. Green supply chain management, reverse logistics and nuclear power generation. Transp. Res. PT E-Logist. Transp., 44(1):19-46.

[32]Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res., 35(2):254-265.

[33]Subramanian, A., Drummond, L.M.A., Bentes, C., et al., 2010. A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res., 37(11):1899-1911.

[34]Subramanian, A., Uchoa, E., Pessoa, A.A., et al., 2011. Branch-and-cut with lazy separation for the vehicle routing problem with simultaneous pickup and delivery. Oper. Res. Lett., 39(5):338-341.

[35]Wang, H.F., Chen, Y.Y., 2012. A genetic algorithm for the simultaneous delivery and pickup problems with time window. Comput. Ind. Eng., 62(1):84-95.

[36]Wang, Y., Ma, X.L., Wang, Y.H., et al., 2012. Location optimization of multiple distribution centers under fuzzy environment. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 13(10):782-798.

[37]Wang, Y., Ma, X.L., Lao, Y.T., et al., 2013. Vehicle routing problem: simultaneous deliveries and pickups with split loads and time windows. J. Transp. Res. Board, 2378:120-128.

[38]Wang, Y., Ma, X.L., Lao, Y.T., et al., 2014. A fuzzy-based customer clustering approach with hierarchical structure for logistics network optimization. Expert Syst. Appl., 41(2):521-534.

[39]Zhang, T., Chaovalitwongse, W.A., Zhang, Y.J., 2012. Scatter search for the stochastic travel-time vehicle routing problem with simultaneous pick-ups and deliveries. Comput. Oper. Res., 39(10):2277-2290.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE