CLC number: TP273; V11
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-05-04
Cited: 5
Clicked: 8233
Hua Zhang, Lu-ping Xu, Yang-he Shen, Rong Jiao, Jing-rong Sun. A new maximum-likelihood phase estimation method for X-ray pulsar signals[J]. Journal of Zhejiang University Science C, 2014, 15(6): 458-469.
@article{title="A new maximum-likelihood phase estimation method for X-ray pulsar signals",
author="Hua Zhang, Lu-ping Xu, Yang-he Shen, Rong Jiao, Jing-rong Sun",
journal="Journal of Zhejiang University Science C",
volume="15",
number="6",
pages="458-469",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300347"
}
%0 Journal Article
%T A new maximum-likelihood phase estimation method for X-ray pulsar signals
%A Hua Zhang
%A Lu-ping Xu
%A Yang-he Shen
%A Rong Jiao
%A Jing-rong Sun
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 6
%P 458-469
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300347
TY - JOUR
T1 - A new maximum-likelihood phase estimation method for X-ray pulsar signals
A1 - Hua Zhang
A1 - Lu-ping Xu
A1 - Yang-he Shen
A1 - Rong Jiao
A1 - Jing-rong Sun
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 6
SP - 458
EP - 469
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300347
Abstract: x-ray pulsar navigation (XPNAV) is an attractive method for autonomous navigation of deep space in the future. Currently, techniques for estimating the phase of x-ray pulsar radiation involve the maximization of the general non-convex object functions based on the average profile from the epoch folding method. This results in the suppression of useful information and highly complex computation. In this paper, a new maximum likelihood (ML) phase estimation method that directly utilizes the measured time of arrivals (TOAs) is presented. The x-ray pulsar radiation will be treated as a cyclo-stationary process and the TOAs of the photons in a period will be redefined as a new process, whose probability distribution function is the normalized standard profile of the pulsar. We demonstrate that the new process is equivalent to the generally used poisson model. Then, the phase estimation problem is recast as a cyclic shift parameter estimation under the ML estimation, and we also put forward a parallel ML estimation method to improve the ML solution. Numerical simulation results show that the estimator described here presents a higher precision and reduces the computational complexity compared with currently used estimators.
[1]Ashby, N., Golshan, A.R., 2008. Minimum uncertainties in position and velocity determination using X-ray photons from millisecond pulsars. Proc. Institute of Navigation, National Technical Meeting, p.110-118.
[2]Bar-Itzhack, I.Y., Oshman, Y., 1985. Attitude determination from vector observations: quaternion estimation. IEEE Trans. Aerosp. Electron. Syst., AES-21(1):128-136.
[3]Benedetto, F., Giunta, G., Lohan, E.S., et al., 2013. A fast unambiguous acquisition algorithm for BOC-modulated signals. IEEE Trans. Veh. Technol., 62(3):1350-1355.
[4]Billing-Ross, J., Fritz, T., Pledger, D., 1992. Ultraviolet three axis attitude sensor. Annual AIAA/Utah State University Conf. on Small Satellites, p.1-5.
[5]Blackburn, J.K., Greene, E.A., Pence, W., 1993. FTOOLS: a FITS data processing and analysis software package. Bull. Am. Astron. Soc., 25:816.
[6]Chubei, M.S., Kovalchuk, L.V., Kholodova, S.I., et al., 2007. Star sensor for independent navigation in deep space. J. Opt. Technol., 74(2):107-114.
[7]Colonnese, S., Rinauro, S., Scarano, G., 2010. Generalized method of moments estimation of location parameters: application to blind phase acquisition. IEEE Trans. Signal Process., 58(9):4735-4749.
[8]Downs, G.S., 1974. Interplanetary Navigation Using Pulsating Radio Sources. N/4-34150. NASA Technical Reports.
[9]Emadzadeh, A.A., Speyer, J.L., 2010. On modeling and pulse phase estimation of X-ray pulsars. IEEE Trans. Signal Process., 58(9):4484-4495.
[10]Emadzadeh, A.A., Speyer, J.L., 2011. Relative navigation between two spacecraft using X-ray pulsars. IEEE Trans. Contr. Syst. Technol., 19(5):1021-1035.
[11]Hanson, J., Sheikh, S., Graven, P., et al., 2008. Noise analysis for X-ray navigation systems. Position, Location and Navigation Symp., IEEE/ION, p.704-713.
[12]Hobbs, G., Lyne, A., Kramer, M., 2006. Pulsar timing noise. Chin. J. Astron. Astrophys., 6(S2):169-175.
[13]Kay, S.M., 1998. Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Prentice Hall PTR.
[14]Kramer, M., 1994. Geometrical analysis of average pulsar profiles using multicomponent Gaussian fits ant several frequencies: II. individual results. Astron. Astrophys, 107:527-539.
[15]Li, J.X., Ke, X.Z., 2011. Maximum-likelihood TOA estimation of X-ray pulsar signals on the basis of Poison model. Chin. Astron. Astrophys., 35(1):19-28.
[16]Lyne, A.G., Smith, F.G., 1998. Pulsar Astronomy. Cambridge University Press, Cambridge, UK.
[17]Ma, J., 2005. A method of autonomous orbit determination for satellite using star sensor. Sci. China Ser. G, 48(3):268.
[18]Manchester, R.N., Taylor, J.H., 1977. Pulsars. W.H. Freeman, San Francisco.
[19]Psiaki, M.L., 2011. Absolute orbit and gravity determination using relative position measurements between two satellites. J. Guid. Contr. Dynam., 34(5):1285-1297.
[20]Ray, P.S., Wood, K.S., Phlips, B.F., 2006. Spacecraft navigation using X-ray pulsars. NRL Rev., p.95-102.
[21]Ray, P.S., Sheikh, S.I., Graven, P.H., et al., 2008. Deep space navigation using celestial X-ray sources. Proc. Institute of Navigation, National Technical Meeting, p.101-109.
[22]Ray, P.S., Kerr, M., Parent, D., et al., 2011. Precise gamma-ray timing and radio observations of 17 Fermi gamma-ray pulsars. Astrophys. J. Suppl. Ser., 194(2):17.
[23]Rinauro, S., Colonnese, S., Scarano, G., 2013. Fast near-maximum likelihood phase estimation of X-ray pulsars. Signal Process., 93(1):326-331.
[24]Sala, J., Andreu, U., Xavier, V., 2004. Feasibility Study for a Spacecraft Navigation System Relying on Pulsar Timing Information. ARIADNA Study 03/4202. European Space Agency Advanced Concepts Team.
[25]Sheikh, S.I., 2005. The use of variable celestial X-ray sources for spacecraft navigation. University of Maryland, College Park, Maryland, United States. Available from http://adsabs.harvard.edu/abs/2005PhDT........30S.
[26]Sheikh, S.I., Pines, D.J., 2006. Recursive estimation of spacecraft position and velocity using X-ray pulsar time of arrival measurements. J. Inst. Navig., 53(3):149-166.
[27]Sheikh, S.I., Pines, D.J., Wood, K.S., et al., 2007. Navigational System and Method Utilizing Sources of Pulsed Celestial Radiation. Available from http://www.google.com/patents?id=31J_AAAAEBAJ.
[28]Xu, X.B., Wu, X.J., 2003. Mean pulse analysis and spectral character study of pulsar PSR B2111+46. Sci. China Ser. G, 46(1):104-112.
[29]Zhang, H., Xu, L.P., 2011. An improved phase measurement method of integrated pulse profile for pulsar. Sci. China Technol. Sci., 54(9):2263-2270.
[30]Zhang, H., Xu, L.P., Xie, Q., 2011. Modeling and Doppler measurement of X-ray pulsar. Sci. China Phys. Mech. Astron., 54(6):1068-1076.
Open peer comments: Debate/Discuss/Question/Opinion
<1>