Full Text:   <3035>

Summary:  <2118>

CLC number: TN43

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-05-04

Cited: 1

Clicked: 7656

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ming-jun Ma

http://orcid.org/0000-0002-2012-8699

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.6 P.497-510

http://doi.org/10.1631/FITEE.1400349


A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer


Author(s):  Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu

Affiliation(s):  Micro-Satellite Research Center, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   edward-ma@zju.edu.cn, jinzh@zju.edu.cn

Key Words:  Bias drift, Closed-loop MEMS accelerometer, Modulated feedback approach, Temperature compensation


Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu. A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(6): 497-510.

@article{title="A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer",
author="Ming-jun Ma, Zhong-he Jin, Hui-jie Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="6",
pages="497-510",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1400349"
}

%0 Journal Article
%T A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer
%A Ming-jun Ma
%A Zhong-he Jin
%A Hui-jie Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 6
%P 497-510
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1400349

TY - JOUR
T1 - A combined modulated feedback and temperature compensation approach to improve bias drift of a closed-loop MEMS capacitive accelerometer
A1 - Ming-jun Ma
A1 - Zhong-he Jin
A1 - Hui-jie Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 6
SP - 497
EP - 510
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1400349


Abstract: 
The bias drift of a micro-electro-mechanical systems (MEMS) accelerometer suffers from the 1/f noise and the temperature effect. For massive applications, the bias drift urgently needs to be improved. Conventional methods often cannot address the 1/f noise and temperature effect in one architecture. In this paper, a combined approach on closed-loop architecture modification is proposed to minimize the bias drift. The modulated feedback approach is used to isolate the 1/f noise that exists in the conventional direct feedback approach. Then a common mode signal is created and added into the closed loop on the basis of modulated feedback architecture, to compensate for the temperature drift. With the combined approach, the bias instability is improved to less than 13 µg, and the drift of the Allan variance result is reduced to 17 µg at 100 s of the integration time. The temperature coefficient is reduced from 4.68 to 0.1 mg/°C. The combined approach could be useful for many other closed-loop accelerometers.

The manuscript describes a closed-loop analogue control system for a micro-machined capacitive accelerometer. The authors claim that the novelty of the described control system is the concurrent possibility of cancelling 1/f noise and temperature drift, leading to improved bias stability and a lower noise floor. The manuscript contains a brief literature review, a description of the principle of operation of the control system, simulated results and measured data to support most of the claims. In general, the topic of the manuscript is of interest to the research community, albeit the impact and novelty of the presented material in my assessment is at most medium.

一种联合调制反馈和温度补偿改善闭环MEMS电容式加速度计漂移的方法

目的:根据Allan方差定义,分析引起闭环MEMS电容式加速度计中长期漂移的因素,研究相应的消除和补偿方法,实现降低漂移、提高闭环MEMS加速度计稳定性的目的。
创新点:首先设计利用载波调制反馈电压信号的方法,避开并滤除反馈通道上的低频噪声,降低Allan方差的偏置不稳定性;然后在反馈通道上加入参考信号,利用该参考信号经过模拟部分后被解调的相位来表征温度,进行温度补偿,进一步降低Allan方差的长期漂移。
方法:首先,根据Allan方差的偏置不稳定性定义,其影响因素来自于闭环系统的低频噪声。根据文献资料和作者之前的实验测试情况,大部分低频噪声来自于反馈通道,因反馈信号是低频电压信号。为降低反馈通道低频噪声,设计载波调制反馈信号及通过高通滤波器滤除低频噪声的方案MFA(图4)。经测试,采用MFA的输出噪声和1小时的稳定性明显优于反馈信号直接反馈的方案DFA(图10-12)。在MFA基础上,继续增加一个参考信号,该信号通过整个系统的模拟部分后被数字系统解调,其相位信息携带了外界温度变化信息,从而可利用该相位信息进行实时温度补偿(图5、6)。对温度补偿方案进行静态温度范围测试(图16),补偿后的度系数是补偿前的1/46;在快速动态温度变化下(图17),实时补偿结果是未补偿的1/8,显示了较好的补偿特性。温度补偿后的Allan方差长期漂移获得明显降低,而偏置不稳定性略微升高(图18、19)。总体上看,利用MFA和温度补偿,闭环MEMS电容式加速度计的整体漂移特性得到较好抑制。
结论:针对闭环MEMS电容式加速度计漂移问题,提出载波调制反馈和新型温度补偿方案。两种方案能够在同一闭环系统中同时使用,分别降低了偏置不稳定性和长期温度漂移,1 h的Allan方差显示,偏置不稳定性约为13 µg,100 s积分时间的漂移为17 µg,温度系数降到0.1 mg/℃,显示了较好的稳定性。

关键词:偏置漂移;闭环MEMS加速度计;调制反馈;温度补偿

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aaltonen, L., Halonen, K., 2009. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 µg and bandwidth of 300 Hz. Sens. Actuat. A, 154(1):46-56.

[2]Allan, D.W., 1966. Statistics of atomic frequency standards. Proc. IEEE, 54(2):221-230.

[3]Amini, B.V., Abdolvand, R., Ayazi, F., 2006. A 4.5-mW closed-loop ΔΣ micro-gravity CMOS SOI accelerometer. IEEE J. Sol.-State Circ., 41(12):2983-2991.

[4]Chae, J., Kulah, H., Najafi, K., 2005. A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro- accelerometer. J. Micromech. Microeng., 15(2):336-345.

[5]Cui, J., Guo, Z.Y., Yang, Z.C., et al., 2011. Electrical coupling suppression and transient response improvement for a microgyroscope using ascending frequency drive with a 2-DOF PID controller. J. Micromech. Microeng., 21(9):1-11.

[6]Dong, Y., Kraft, M., Redman-White, W., 2007. Higher order noise-shaping filters for high-performance micro-machined accelerometers. IEEE Trans. Instrum. Meas., 56(5):1666-1674.

[7]Dong, Y., Zwahlen, P., Nguyen, A.M., et al., 2010. High performance inertial navigation grade sigma-delta MEMS accelerometer. Proc. IEEE/ION Position Location and Navigation Symp., p.32-36.

[8]Enz, C.C., Temes, G.C., 1996. Circuit techniques for reducing the effects of OP-AMP imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE, 84(11):1584-1614.

[9]IEEE, 1998. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE Std 952-1997.

[10]Josselin, V., Touboul, P., Kielbasa, R., 1999. Capacitive detection scheme for space accelerometer applications. Sens. Actuat. A, 78(2-3):92-98.

[11]Kajita, T., Moon, U.K., Temes, G.C., 2002. A two-chip interface for a MEMS accelerometer. IEEE Trans. Instrum. Meas., 51(4):853-858.

[12]Karabalin, R.B., Villanueva, L.G., Matheny, M.H., et al., 2012. Stress-induced variation in the stiffness of micro- and nanocantilever beams. Phys. Rev. Lett., 108:236101.

[13]Ko, H., Cho, D.D., 2010. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sens. Actuat. A, 158(1):72-83.

[14]Lakdawala, H., Fedder, G.K., 2004. Temperature stabilization of CMOS capacitive accelerometers. J. Micromech. Microeng., 14(4):559-566.

[15]Lee, J., Rhim, J., 2012. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J. Micromech. Microeng., 22(9):1-11.

[16]Lee, K., Takao, H., Sawada, K., et al., 2003. A three-axis accelerometer for high temperatures with low temperature dependence using a constant temperature control of SOI piezoresistors. Proc. 16th IEEE Annual Int. Conf. on Micro Electro Mechanical Systems, p.478-481.

[17]Li, M., Horsley, D.A., 2014. Offset suppression in a micro-machined Lorentz force magnetic sensor by current chopping. J. Microelectromech. Syst., 23(6):1477-1484.

[18]Liu, D., Chi, X., Cui, J., et al., 2008. Research on temperature dependent characteristics and compensation methods for digital gyroscope. Proc. 3rd Int. Conf. on Sensing Technology, p.273-277.

[19]Petkov, V.P., Boser, B.E., 2004. Capacitive interfaces for MEMS. In: Baltes, H., Brand, O., Fedder, G.K., et al. (Eds.), Enabling Technology for MEMS and Nanodevices. Wiley-VCH Weinheim, p.49-92.

[20]Prikhodko, I.P., Trusov, A.A., Shkel, A.M., 2013. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens. Actuat. A, 201:517-524.

[21]Samarao, A.K., Ayazi, F., 2012. Temperature compensation of silicon resonators via degenerate doping. IEEE Trans. Electron Dev., 59(1):87-93.

[22]Schreier, R., 1993. An empirical study of high-order single-bit delta-sigma modulators. IEEE Trans. Circ. Syst. II, 40(8):461-466.

[23]Willemenot, E., Touboul, P., 2000. On-ground investigation of space accelerometer noise with an electrostatic torsion pendulum. Rev. Sci. Instrum., 71(1):302-309.

[24]Wongkomet, N., Boser, B.E., 1998. Correlated double sampling in capacitive position sensing circuits for micromachined applications. Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, p.723-726.

[25]Wortman, J.J., Evans, R.A., 1965. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys., 36(1):153-156.

[26]Wu, J., Fedder, G.K., Carley, L.R., 2004. A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Sol.-State Circ., 39(5):722-730.

[27]Yoshida, Y., Kakuma, H., Asanuma, H., et al., 2005. A linear model based noise evaluation of a capacitive servo-accelerometer fabricated by MEMS. IEICE Electron. Expr., 2(6):198-204.

[28]Zheng, X., Jin, Z., Wang, Y., et al., 2009. An in-plane low-noise accelerometer fabricated with an improved process flow. J. Zhejiang Univ.-Sci. A, 10(10):1413-1420.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE