Full Text:   <2589>

Summary:  <1691>

CLC number: TN402

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-12-23

Cited: 0

Clicked: 6605

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zamshed Iqbal Chowdhury

http://orcid.org/0000-0002-4096-7000

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.2 P.262-271

http://doi.org/10.1631/FITEE.1500349


Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects


Author(s):  Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser

Affiliation(s):  Institute of Information Technology, Jahangirnagar University, Dhaka 1342, Bangladesh; more

Corresponding email(s):   zic@juniv.edu, mskaiser@juniv.edu

Key Words:  Interconnect, Carbon nanotube, Current density, Propagation constant, Characteristic impedance, System-on-chip


Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser. Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 262-271.

@article{title="Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects",
author="Zamshed Iqbal Chowdhury, Md. Istiaque Rahaman, M. Shamim Kaiser",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="2",
pages="262-271",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500349"
}

%0 Journal Article
%T Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects
%A Zamshed Iqbal Chowdhury
%A Md. Istiaque Rahaman
%A M. Shamim Kaiser
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 2
%P 262-271
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500349

TY - JOUR
T1 - Electrical analysis of single-walled carbon nanotube as gigahertz on-chip interconnects
A1 - Zamshed Iqbal Chowdhury
A1 - Md. Istiaque Rahaman
A1 - M. Shamim Kaiser
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 2
SP - 262
EP - 271
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500349


Abstract: 
The single-walled carbon nanotube (SWCNT) is a promising nanostructure in the design of future high-frequency system-on-chip, especially in network-on-chip, where the quality of communication between intellectual property (IP) modules is a major concern. Shrinking dimensions of circuits and systems have restricted the use of high-frequency signal characteristics for frequencies up to 1000 GHz. Four key electrical parameters, impedance, propagation constant, current density, and signal delay time, which are crucial in the design of a high-quality interconnect, are derived for different structural configurations of SWCNT. Each of these parameters exhibits strong dependence on the frequency range over which the interconnect is designed to operate, as well as on the configuration of SWCNT. The novelty of the proposed model for solving next-generation high-speed integrated circuit (IC) interconnect challenges is illustrated, compared with existing theoretical and experimental results in the literature.

In this paper, the authors proposed a mathematical model for high frequency analysis of CNT interconnects. The overall quality is good.

千兆赫片上互联单壁纳米碳管电分析

概要:在未来的高频系统芯片,特别是片上网络的设计中,知识产权模块之间的联系至为关键,而单壁纳米碳管则是其中一种很有前景的纳米结构。电路及系统尺寸的不断缩减限制了对1000 GHz级别高频信号特征的利用。本文针对不同结构构型的单壁纳米碳管,对高质量互联中四项重要的四项电参数--阻抗,传播常量,电流密度以及信号延时进行了推导。每个参数均表现出了对其设计互联频率范围和构型的强相关性。与现有理论和实验结果相比,本文所提出的模型在解决下一代高速集成电路互联问题上有其新颖性。

关键词:互联;碳纳米管;电流密度;传播常量;特性阻抗;片上系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allan, A., Edenfeld, D., Joyner, W.H., et al., 2002. 2001 technology roadmap for semiconductors. Computer, 35(1):42-53.

[2]Anantram, M.P., Léonard, F., 2006. Physics of carbon nano-tube electronic devices. Rep. Prog. Phys., 69(3):507-561.

[3]Baughman, R.H., Zakhidov, A.A., de Heer, W.A., 2002. Carbon nanotubes–-the route toward applications. Science, 297(5582):787-792.

[4]Burke, P.J., 2002a. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1(3):129-144.

[5]Burke, P.J., 2002b. An RF circuit model for carbon nano-tubes. Proc. 2nd IEEE Conf. on Nanotechnology, p.393-396.

[6]Cursaru, D., Enescu, D., Ciuparu, D., 2011. Control of (n, m) selectivity in single wall carbon nanotubes (SWNT) growth by varying the Co-Ni ratio in bi-metallic Co-Ni-MCM 41 catalysts. Rev. Chim.-Bucharest, 62(7):792-798.

[7]Dragoman, M., Grenier, K., Dubuc, D., et al., 2006. Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nano-tubes. Appl. Phys. Lett., 8(15):1-3.

[8]Fagan, A.J., Hároz, E.H., Ihly, R., et al., 2015. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano, 9(5):5377-5390.

[9]Galand, R., Brunetti, G., Arnaud, L., et al., 2013. Microstructural void environment characterization by electron imaging in 45 nm technology node to link electromigration and Copper microstructure. Microelectron. Eng., 106:168-171.

[10]Huang, C.Y., Hu, C.Y., Pan, H.C., et al., 2005. Electrooptical responses of carbon nanotube-doped liquid crystal devices. Jpn. J. Appl. Phys., 44(11):8077-8081.

[11]Iqbal, M.Z., Puigdemont, J.P., Eom, J., et al., 2014. High-frequency impedance of single-walled carbon nanotube networks on transparent flexible substrate. Phys. Status Sol. B, 251(12):2461-2465.

[12]Ismail, Y., Friedman, E.G., Neves, J.L., 2000. Equivalent Elmore delay for RLC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst., 19(1):83-97.

[13]Jespersen, T.S., Nygaard, J., 2005. Charge trapping in carbon nanotube loops demonstrated by electrostatic force microscopy. Nano Lett., 5(9):1838-1841.

[14]Journet, C., Maser, W.K., Bernier, P., et al., 1997. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756-758.

[15]Kane, C., Balents, L., Fisher, M.P., 1997. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett., 79(25):5086-5089.

[16]Kreupl, F., 2008. Carbon nanotubes in microelectronic applications. In: Hierold, C., Brand, O., Fedder, G.K. (Eds.), Carbon Nanotube Devices: Properties, Modelling, Integration and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.1-42.

[17]Liang, F., Wang, G., Ding, W., 2011. Estimation of time delay and repeater insertion in multiwall carbon nano-tube interconnects. IEEE Trans. Electron. Dev., 58(8):2712-2720.

[18]Liu, C., Cheng, H.M., 2013. Carbon nanotubes: controlled growth and application. Mater. Today, 16(1-2):19-28.

[19]McEuen, P.L., Fuhrer, M.S., Park, H., 2002. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol., 99(1):78-85.

[20]Nieuwoudt, A., Massoud, Y., 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol., 5(6):758-765.

[21]Nihei, M., Horibe, M., Kawabata, A., et al., 2004. Carbon nanotube vias for future LSI interconnects. Proc. IEEE Int. Interconnect Technology Conf., p.251-253.

[22]Ounaies, Z., Park, C., Wise, K.E., et al., 2003. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol., 63(11):1637-1646.

[23]Srivastava, N., Banarjee, K., 2005. Performance analysis of carbon nanotube interconnects for VLSI applications. IEEE/ACM Int. Conf. Computer-Aided Design, p.383-390.

[24]Srivastava, N., Li, H., Kreupl, F., et al., 2009. On the applicability of single-walled carbon nanotubes as VLSI interconnects. IEEE Trans. Nanotechnol., 8(4):542-559.

[25]Thess, A., Lee, R., Nikolaev, P., et al., 1996. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483-487.

[26]Yuzvinsky, T.D., Mickelson, W., Aloni, S., et al., 2006. Shrinking a carbon nanotube. Nano Lett., 6(12):2718-2722.

[27]Zhao, Y.P., Wei, B.Q., Ajayan, P.M., et al., 2001. Frequency-dependent electrical transport in carbon nanotubes. Phys. Rev. B, 64(20):201402.

[28]Zhou, Y., Sreekala, S., Ajayan, P.M., et al., 2008. Resistance of copper nanowires and comparison with carbon nano-tube bundles for interconnect applications using first principles calculations. J. Phys.-Condens. Matter, 20(9):1-5.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE