CLC number: TP273; V448.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-04-16
Cited: 0
Clicked: 8821
Gong-jun Li. Adaptive tracking control for air-breathing hypersonic vehicles with state constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 599-614.
@article{title="Adaptive tracking control for air-breathing hypersonic vehicles with state constraints",
author="Gong-jun Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="5",
pages="599-614",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500464"
}
%0 Journal Article
%T Adaptive tracking control for air-breathing hypersonic vehicles with state constraints
%A Gong-jun Li
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 5
%P 599-614
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500464
TY - JOUR
T1 - Adaptive tracking control for air-breathing hypersonic vehicles with state constraints
A1 - Gong-jun Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 5
SP - 599
EP - 614
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500464
Abstract: We investigate the adaptive tracking problem for the longitudinal dynamics of state-constrained air-breathing hypersonic vehicles, where not only the velocity and the altitude, but also the angle of attack (AOA) is required to be tracked. A novel indirect AOA tracking strategy is proposed by viewing the pitch angle as a new output and devising an appropriate pitch angle reference trajectory. Then based on the redefined outputs (i.e., the velocity, the altitude, and the pitch angle), a modified backstepping design is proposed where the barrier Lyapunov function is used to solve the state-constrained control problem and the control gain of this class of systems is unknown. Stability analysis is given to show that the tracking objective is achieved, all the closed-loop signals are bounded, and all the states always satisfy the given constraints. Finally, numerical simulations verify the effectiveness of the proposed approach.
This paper investigates the adaptive tracking problem for the longitudinal dynamics of state-constrained air-breathing hypersonic vehicles. The angle of attack (AOA) is constrained by applying to the propose control scheme. This research topic is interesting.
[1]Bemporad, A., 1998. Reference governor for constrained nonlinear systems. IEEE Trans. Autom. Contr., 43(3):415-419.
[2]Bolender, M.A., Doman, D.B., 2007. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. J. Spacecraft Rockets, 44(2):374-387.
[3]Bu, X.W., Wu, X.Y., Ma, Z., et al., 2016. Novel auxiliary error compensation design for the adaptive neural control of a constrained flexible air-breathing hypersonic vehicle. Neurocomputing, 171:313-324.
[4]Burger, M., Guay, M., 2010. Robust constraint satisfaction for continuous-time nonlinear systems in strict feedback form. IEEE Trans. Autom. Contr., 55(11):2597-2601.
[5]Cox, C., Lewis, C., Pap, R., et al., 1995. Prediction of unstart phenomena in hypersonic aircraft. Proc. Int. Aerospace Planes and Hypersonics Technologies, Int. Space Planes and Hypersonic Systems and Technologies Conf.
[6]Fidan, B., Mirmirani, M., Ioannou, P., 2003. Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. Proc. 12th AIAA Int. Space Planes and Hypersonic Systems and Technologies Conf.
[7]Fiorentini, L., 2010. Nonlinear Adaptive Controller Design for Air-Breathing Hypersonic Vehicles. PhD Thesis, Ohio State University, USA.
[8]Fiorentini, L., Serrani, A., 2012. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model. Automatica, 48(7):1248-1261.
[9]Fiorentini, L., Serrani, A., Bolender, M.A., et al., 2009. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J. Guid. Contr. Dyn., 32(2):402-417.
[10]Gibson, T.E., Crespo, L.G., Annaswamy, A.M., 2009. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. Proc. American Control Conf., p.3178-3183.
[11]Gilbert, E., Kolmanovsky, I., 2002. Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor. Automatica, 38(12):2063-2073.
[12]Gregory, I., Mcminn, J., Shaughnessy, J., et al., 1992. Hypersonic vehicle control law development using Hinfty and mu-synthesis. Proc. 4th Symp. on Multidisciplinary Analysis and Optimization Conf.
[13]Hu, X., Karimi, H.R., Wu, L., et al., 2014a. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles. IET Contr. Theory Appl., 8(13):1147-1153.
[14]Hu, X., Wu, L., Hu, C., et al., 2014b. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach. Int. J. Syst. Sci., 45(8):1740-1756.
[15]Jin, X., Kwong, R.H.S., 2015. Adaptive fault tolerant control for a class of MIMO nonlinear systems with input and state constraints. Proc. American Control Conf., p.2254-2259.
[16]Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., 1995. Nonlinear and Adaptive Control Design. Wiley.
[17]Li, G.J., Meng, B., 2015. Actuators coupled design based adaptive backstepping control of air-breathing hypersonic vehicle. IFAC-PapersOnLine, 48(28):508-513.
[18]Li, S.H., Sun, H.B., Sun, C.Y., 2012. Composite controller design for an airbreathing hypersonic vehicle. Proc. Instit. Mech. Eng. Part I, 226(5):651-664.
[19]Liu, Y.J., Li, D.J., Tong, S.C., 2014. Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int. J. Contr., 87(2):281-290.
[20]Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al., 2000. Constrained model predictive control: stability and optimality. Automatica, 36(6):789-814.
[21]Mirmirani, M., Kuipers, M., Levin, J., et al., 2009. Flight dynamic characteristics of a scramjet-powered generic hypersonic vehicle. Proc. American Control Conf., p.2525-2532.
[22]Ngo, K.B., Mahony, R., Jiang, Z.P., 2005. Integrator backstepping using barrier functions for systems with multiple state constraints. Proc. 44th IEEE Conf. on Decision and Control, p.8306-8312.
[23]Oland, E., Schlanbusch, R., Kristiansen, R., 2013. Underactuated translational control of a rigid spacecraft. Proc. IEEE Aerospace Conf., p.1-7.
[24]Parker, J.T., Serrani, A., Yurkovich, S., et al., 2007. Control-oriented modeling of an air-breathing hypersonic vehicle. J. Guid. Contr. Dyn., 30(3):856-869.
[25]Pettersen, K.Y., 2015. Underactuated marine control systems. In: Baillieul, J., Samad, T. (Eds.), Encyclopedia of Systems and Control, p.1499-1503.
[26]Qiu, J.B., Feng, G., Gao, H.J., 2013. Static-output-feedback Hinfty control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst., 21(2):245-261.
[27]Qiu, J.B., Wei, Y.L., Karimi, H.R., 2015. New approach to delay-dependent Hinfty control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Franklin Instit., 352(1):189-215.
[28]Qiu, J.B., Ding, S.X., Gao, H.J., et al., 2016. Fuzzy-model-based reliable static output feedback Hinfty control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst., 24(2):388-400.
[29]Serrani, A., 2013. Nested zero-dynamics redesign for a non-minimum phase longitudinal model of a hypersonic vehicle. Proc. 52nd IEEE Conf. on Decision and Control, p.4833-4838.
[30]Shaughnessy, J.D., Pinckney, S.Z., McMinn, J.D., et al., 1990. Hypersonic Vehicle Simulation Model: Winged-Cone Configuration. NASA Technical Memorandum 102610, USA.
[31]Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control. Prentice-Hall Englewood Cliffs, New Jersey, USA.
[32]Sun, H.B., Li, S.H., Sun, C.Y., 2013. Finite time integral sliding mode control of hypersonic vehicles. Nonl. Dyn., 73(1):229-244.
[33]Sun, H.F., Yang, Z.L., Zeng, J.P., 2013. New tracking-control strategy for airbreathing hypersonic vehicles. J. Guid. Contr. Dyn., 36(3):846-859.
[34]Tee, K.P., Ge, S.S., 2011. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int. J. Contr., 84(12):2008-2023.
[35]Tee, K.P., Ge, S.S., Tay, E.H., 2009. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918-927.
[36]Wang, T., Gao, H., Qiu, J., 2016. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neur. Netw. Learn. Syst., 27(2):416-425.
[37]Wolff, J., Weber, C., Buss, M., 2007. Continuous control mode transitions for invariance control of constrained nonlinear systems. Proc. 46th IEEE Conf. on Decision and Control, p.542-547.
[38]Wu, H.N., Liu, Z.Y., Guo, L., 2014. Robust Linfty-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle. IEEE Trans. Fuzzy Syst., 22(6):1401-1412.
[39]Xu, B., Gao, D.X., Wang, S.X., 2011. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci. China Inform. Sci., 54(3):511-520.
[40]Xu, B., Sun, F., Liu, H., et al., 2012. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Contr. Theory Appl., 6(4):487-497.
[41]Xu, H.J., Mirmirani, M.D., Ioannou, P.A., 2004. Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Contr. Dyn., 27(5):829-838.
[42]Yang, J., Li, S.H., Sun, C.Y., et al., 2013. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerosp. Electron. Syst., 49(2):1263-1275.
[43]Zong, Q., Wang, J., Tao, Y., 2013. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle. Int. J. Robust Nonl. Contr., 23(15):1718-1736.
Open peer comments: Debate/Discuss/Question/Opinion
<1>