Full Text:   <2669>

Summary:  <1478>

CLC number: TP393

On-line Access: 2016-11-07

Received: 2016-06-11

Revision Accepted: 2016-08-14

Crosschecked: 2016-10-09

Cited: 1

Clicked: 4326

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gui-lin CAI

http://orcid.org/0000-0002-9322-2539

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.11 P.1122-1153

http://doi.org/10.1631/FITEE.1601321


Moving target defense: state of the art and characteristics


Author(s):  Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG

Affiliation(s):  College of Computer, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   cc_cai@163.com

Key Words:  Moving target defense, Security model, Function-and-movement model, Characteristics


Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. Moving target defense: state of the art and characteristics[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(11): 1122-1153.

@article{title="Moving target defense: state of the art and characteristics",
author="Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="11",
pages="1122-1153",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601321"
}

%0 Journal Article
%T Moving target defense: state of the art and characteristics
%A Gui-lin CAI
%A Bao-sheng WANG
%A Wei HU
%A Tian-zuo WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 11
%P 1122-1153
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601321

TY - JOUR
T1 - Moving target defense: state of the art and characteristics
A1 - Gui-lin CAI
A1 - Bao-sheng WANG
A1 - Wei HU
A1 - Tian-zuo WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 11
SP - 1122
EP - 1153
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601321


Abstract: 
moving target defense (MTD) has emerged as one of the game-changing themes to alter the asymmetric situation between attacks and defenses in cyber-security. Numerous related works involving several facets of MTD have been published. However, comprehensive analyses and research on MTD are still absent. In this paper, we present a survey on MTD technologies to scientifically and systematically introduce, categorize, and summarize the existing research works in this field. First, a new security model is introduced to describe the changes in the traditional defense paradigm and security model caused by the introduction of MTD. A function-and-movement model is provided to give a panoramic overview on different perspectives for understanding the existing MTD research works. Then a systematic interpretation of published literature is presented to describe the state of the art of the three main areas in the MTD field, namely, MTD theory, MTD strategy, and MTD evaluation. Specifically, in the area of MTD strategy, the common characteristics shared by the MTD strategies to improve system security and effectiveness are identified and extrapolated. Thereafter, the methods to implement these characteristics are concluded. Moreover, the MTD strategies are classified into three types according to their specific goals, and the necessary and sufficient conditions of each type to create effective MTD strategies are then summarized, which are typically one or more of the aforementioned characteristics. Finally, we provide a number of observations for the future direction in this field, which can be helpful for subsequent researchers.

移动目标防御:现状及特征

概要:易攻难守是当前网络安全研究面临的核心问题,而移动目标防御(Moving target defense, MTD)为解决这一问题提供了一种全新思路。当前已有涉及MTD多个方面的大量研究被提出。然而,目前尚缺乏对MTD的综合性分析和研究。本文的主要目的是对该研究领域的已有成果进行系统性的介绍、分类和总结。我们首先提出了一个新的安全模型来描述MTD的引入对传统防御模式和安全模型的影响,同时还提出了一个功能和移动模型,为从不同方面理解已有的MTD研究提供了一个全新的视角。然后,我们分别对MTD的三个子领域(MTD机理研究、MTD策略研究、MTD评估研究)中的大量文献进行详细描述,以展示MTD领域的发展现状。尤其是在MTD策略子领域,我们对一些能保证这些策略正常有效运行的共有特征进行了识别和提取,并总结了创建这些特征的方式和方法。我们还依据MTD策略的特定目标将已有研究分为三种类型,并总结了创建每种类型策略的充要条件,这些充要条件是前面所总结的特征中的一个或多个。最后,我们对该领域的未来研究方向进行了探讨。

关键词:移动目标防御;安全模型;功能和移动模型;特征

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Albanese, M., de Benedictis, A., Jajodia, S., et al., 2013. A moving target defense mechanism for MANETs based on identity virtualization. Proc. IEEE Conf. on Communications and Network Security, p.278-286.

[2]Al-Shaer, E., 2011. Toward network configuration randomization for moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.153-159.

[3]Al-Shaer, E., Duan, Q., Jafarian, J.H., 2013. Random host mutation for moving target defense. In: Keromytis, A.D., di Pietro, R. (Eds.), Security and Privacy in Communication Networks. Springer Berlin Heidelberg, Germany, p.310-327.

[4]Andel, T.R., Whitehurst, L.N., McDonald, J.T., 2014. Software security and randomization through program partitioning and circuit variation. Proc. 1st ACM Workshop on Moving Target Defense, p.79-86.

[5]Azab, M., Hassan, R., Eltoweissy, M., 2011. ChameleonSoft: a moving target defense system. Proc. 7th Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.241-250.

[6]Bangalore, A.K., Sood, A.K., 2009. Securing web servers using self cleansing intrusion tolerance (SCIT). Proc. 2nd Int. Conf. on Dependability, p.60-65.

[7]Beraud, P., Cruz, A., Hassell, S., et al., 2010. Cyber defense network maneuver commander. Proc. IEEE Int. Carnahan Conf. on Security Technology, p.112-120.

[8]Beraud, P., Cruz, A., Hassell, S., et al., 2011. Using cyber maneuver to improve network resiliency. Proc. Military Communications Conf., p.1121-1126.

[9]Bilar, D., Cybenko, G., Murphy, J., 2013. Adversarial dynamics: the conficker case study. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.41-71.

[10]Cai, G.L., Wang, B.S., Luo, Y.B., et al., 2016. Characterizing the running patterns of moving target defense mechanisms. Proc. 18th Int. Conf. on Advanced Communication Technology, p.191-196.

[11]Carroll, T.E., Crouse, M., Fulp, E.W., et al., 2014. Analysis of network address shuffling as a moving target defense. Proc. IEEE Int. Conf. on Communications, p.701-706.

[12]Carter, K.M., Riordan, J.F., Okhravi, H., 2014. A game theoretic approach to strategy determination for dynamic platform defenses. Proc. 1st ACM Workshop on Moving Target Defense, p.21-30.

[13]Carvalho, M., Ford, R., 2014. Moving-target defenses for computer networks. IEEE Sec. Priv. , 12(2):73-76.

[14]Carvalho, M., Bradshaw, J.M., Bunch, L., et al., 2012. Command and control requirements for moving-target defense. IEEE Intell. Syst. , 27(3):79-85.

[15]Carvalho, M., Eskridge, T.C., Bunch, L., et al., 2013. MTC2: a command and control framework for moving target defense and cyber resilience. Proc. 6th Int. Symp. on Resilient Control Systems, p.175-180.

[16]Casola, V., de Benedictis, A., Albanese, M., 2014. A multi-layer moving target defense approach for protecting resource-constrained distributed devices. In: Bouabana-Tebibel, T., Rubin, S.H. (Eds.), Integration of Reusable Systems. Springer International Publishing, Switzerland, p.299-324.

[17]Chavez, A.R., Stout, W.M.S., Peisert, S., 2015. Techniques for the dynamic randomization of network attributes. Proc. Int. Carnahan Conf. on Security Technology, p.1-6.

[18]Christodorescu, M., Fredrikson, M., Jha, S., et al., 2011. End-to-end software diversification of Internet services. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.117-130.

[19]Clark, A., Sun, K., Poovendran, R., 2013. Effectiveness of IP address randomization in decoy-based moving target defense. Proc. 52nd IEEE Conf. on Decision and Control, p.678-685.

[20]Colbaugh, R., Glass, K., 2012. Predictability-oriented defense against adaptive adversaries. Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, p.2721-2727.

[21]Corbett, C., Uher, J., Cook, J., et al., 2014. Countering intelligent jamming with full protocol stack agility. IEEE Sec. Priv. , 12(2):44-50.

[22]Crosby, S., Carvalho, M., Kidwell, D., 2013. A layered approach to understanding network dependencies on moving target defense mechanisms. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 36.

[23]Crouse, M., Prosser, B., Fulp, E.W., 2015. Probabilistic performance analysis of moving target and deception reconnaissance defenses. Proc. 2nd ACM Workshop on Moving Target Defense, p.21-29.

[24]Cui, A., Stolfo, S.J., 2011. Symbiotes and defensive mutualism: moving target defense. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.99-108.

[25]Debroy, S., Calyam, P., Nguyen, M., et al., 2016. Frequency-minimal moving target defense using software-defined networking. Proc. Int. Conf. on Computing, Networking and Communications, p.1-6.

[26]Dunlop, M., Groat, S., Urbanski, W., et al., 2011. MT6D: a moving target IPv6 defense. Proc. Military Communications Conf., p.1321-1326.

[27]Eskridge, T.C., Carvalho, M.M., Stoner, E., et al., 2015. VINE: a cyber emulation environment for MTD experimentation. Proc. 2nd ACM Workshop on Moving Target Defense, p.43-47.

[28]Evans, D., Nguyen-Tuong, A., Knight, J., 2011. Effectiveness of moving target defenses. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.29-48.

[29]Gonzalez, C., 2013. From individual decisions from experience to behavioral game theory: lessons for cybersecurity. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.73-86.

[30]Green, M., MacFarland, D.C., Smestad, D.R., et al., 2015. Characterizing network-based moving target defenses. Proc. 2nd ACM Workshop on Moving Target Defense, p.31-35.

[31]Han, Y.J., Lu, W.L., Xu, S.H., 2014. Characterizing the power of moving target defense via cyber epidemic dynamics. Proc. Symp. and Bootcamp on the Science of Security, Article 10.

[32]Hobson, T., Okhravi, H., Bigelow, D., et al., 2014. On the challenges of effective movement. Proc. 1st ACM Workshop on Moving Target Defense, p.41-50.

[33]Hong, J.B., Kim, D.S., 2016. Assessing the effectiveness of moving target defenses using security models. IEEE Trans. Depend. Secur. Comput. , 13(2):163-177.

[34]Huang, Y., Ghosh, A.K., 2011. Introducing diversity and uncertainty to create moving attack surfaces for web services. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.131-151.

[35]Jackson, T., Salamat, B., Homescu, A., et al., 2011. Compiler-generated software diversity. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.77-98.

[36]Jackson, T., Homescu, A., Crane, S., et al., 2013. Diversifying the software stack using randomized NOP insertion. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.151-173.

[37]Jafarian, J.H., Al-Shaer, E., Duan, Q., 2012. OpenFlow random host mutation: transparent moving target defense using software defined networking. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.127-132.

[38]Jafarian, J.H., Al-Shaer, E., Duan, Q., 2014. Spatio-temporal address mutation for proactive cyber agility against sophisticated attackers. Proc. 1st ACM Workshop on Moving Target Defense, p.69-78.

[39]Jain, M., An, B., Tambe, M., 2013. Security games applied to real-world: research contributions and challenges. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.15-39.

[40]Jajodia, S., Ghosh, A.K., Swarup, V., et al., 2011. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA.

[41]Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al., 2013. Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA.

[42]Jangda, A., Mishra, M., de Sutter, B., 2015. Adaptive just-in-time code diversification. Proc. 2nd ACM Workshop on Moving Target Defense, p.49-53.

[43]Jia, Q., Sun, K., Stavrou, A., 2013. MOTAG: moving target defense against Internet denial of service attacks. Proc. 22nd Int. Conf. on Computer Communication and Networks, p.1-9.

[44]John, D.J., Smith, R.W., Turkett, W.H., et al., 2014. Evolutionary based moving target cyber defense. Proc. Annual Conf. on Genetic and Evolutionary Computation, p.1261-1268.

[45]Kampanakis, P., Perros, H., Beyene, T., 2014. SDN-based solutions for moving target defense network protection. Proc. 15th Int. Symp. on a World of Wireless, Mobile and Multimedia Networks, p.1-6.

[46]le Goues, C., Nguyen-Tuong, A., Chen, H., et al., 2013. Moving target defenses in the helix self-regenerative architecture. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.117-149.

[47]Liu, C.M., Zhang, Y., Chen, R., 2011. Research on dynamic model for network security based on artificial immunity. Int. J. Knowl. Lang. Process. , 2(3):21-35.

[48]Liu, Y.J., Peng, W., Su, J.S., 2014. A study of IP prefix hijacking in cloud computing networks. Secur. Commun. Netw. , 7(11):2201-2210.

[49]Lu, Z., Marvel, L., Wang, C., 2015. To be proactive or not: a framework to model cyber maneuvers for critical path protection in MANETs. Proc. 2nd ACM Workshop on Moving Target Defense, p.85-93.

[50]Lucas, B., Fulp, E.W., John, D.J., et al., 2014. An initial framework for evolving computer configurations as a moving target defense. Proc. 9th Annual Cyber and Information Security Research Conf., p.69-72.

[51]Luo, Y.B., Wang, B.S., Cai, G.L., 2014. Effectiveness of port hopping as a moving target defense. Proc. 7th Int. Conf. on Security Technology, p.7-10.

[52]Luo, Y.B., Wang, B.S., Wang, X.F., et al., 2015. RPAH: random port and address hopping for thwarting internal and external adversaries. Proc. IEEE Trustcom/ BigDataSE/ISPA, p.263-270.

[53]MacFarland, D.C., Shue, C.A., 2015. The SDN shuffle: creating a moving-target defense using host-based software-defined networking. Proc. 2nd ACM Workshop on Moving Target Defense, p.37-41.

[54]Manadhata, P.K., 2013. Game theoretic approaches to attack surface shifting. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.1-13.

[55]Manadhata, P.K., Wing, J.M., 2011a. An attack surface metric. IEEE Trans. Softw. Eng. , 37(3):371-386.

[56]Manadhata, P.K., Wing, J.M., 2011b. A formal model for a system’s attack surface. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.1-28.

[57]Moody, W.C., Hu, H., Apon, A., 2014. Defensive maneuver cyber platform modeling with stochastic Petri nets. Proc. Int. Conf. on Collaborative Computing: Networking, Applications and Worksharing, p.531-538.

[58]Murphy, M., Larsen, P., Brunthaler, S., et al., 2014. Software profiling options and their effects on security based diversification. Proc. 1st ACM Workshop on Moving Target Defense, p.87-96.

[59]National Cyber Leap Year Summit 2009 Co-chairs’ Report. Available from https://www.nitrd.gov/nitrdgroups/index.php?title=Category:National_Cyber_Leap_Year_Summit_2009 [Accessed on Jan. 1, 2014].

[60]Cybersecurity Game-Change Research & Development Recommendations. Available from http://www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity_%20GameChange_RD_%20Recommendations_20100513.pdf [Accessed on Aug. 20, 2013].

[61]Oehmen, C., Peterson, E., Teuton, J., 2013. Evolutionary drift models for moving target defense. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 37.

[62]Okhravi, H., Comella, A., Robinson, E., et al., 2011a. Creating a cyber moving target for critical infrastructure applications. In: Butts, J., Shenoi, S. (Eds.), Critical Infrastructure Protection V. Springer Berlin Heidelberg, Germany, p.107-123.

[63]Okhravi, H., Haines, J.W., Ingols, K., 2011b. Achieving cyber survivability in a contested environment using a cyber moving target. High Front. J. , 7(3):9-13.

[64]Okhravi, H., Comella, A., Robinson, E., et al., 2012. Creating a cyber moving target for critical infrastructure applications using platform diversity. Int. J. Crit. Infrast. Protect. , 5(1):30-39.

[65]Okhravi, H., Rabe, M.A., Mayberry, T.J., et al., 2013. Survey of Cyber Moving Targets. Technical Report, No. MIT/LL-TR-1166. Lincoln Laboratory, Massachusetts Institute of Technology, USA.

[66]Okhravi, H., Hobson, T., Bigelow, D., et al., 2014a. Finding focus in the blur of moving-target techniques. IEEE Sec. Priv. , 12(2):16-26.

[67]Okhravi, H., Riordan, J., Carter, K., 2014b. Quantitative evaluation of dynamic platform techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G. (Eds.), Research in Attacks, Intrusions and Defenses. Springer International Publishing, Switzerland, p.405-425.

[68]Pappas, V., Polychronakis, M., Keromytis, A.D., 2013. Practical software diversification using in-place code randomization. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.175-202.

[69]Peng, W., Li, F., Huang, C.T., et al., 2014. A moving-target defense strategy for cloud-based services with heterogeneous and dynamic attack surfaces. Proc. IEEE Int. Conf. on Communications, p.804-809.

[70]Prakash, A., Wellman, M.P., 2015. Empirical game-theoretic analysis for moving target defense. Proc. 2nd ACM Workshop on Moving Target Defense, p.57-65.

[71]Rahman, M.A., Al-Shaer, E., Bobba, R.B., 2014. Moving target defense for hardening the security of the power system state estimation. Proc. 1st ACM Workshop on Moving Target Defense, p.59-68.

[72]Rinard, M., 2011. Manipulating program functionality to eliminate security vulnerabilities. In: Jajodia, S., Ghosh, A.K., Swarup, V., et al. (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer New York, USA, p.109-115.

[73]Roeder, T., Schneider, F.B., 2010. Proactive obfuscation. ACM Trans. Comput. Syst. , 28(2):Article 4.

[74]Sandoval, J.E., Hassell, S.P., 2010. Measurement, identification and calculation of cyber defense metrics. Proc. Military Communications Conf., p.2174-2179.

[75]Taguinod, M., Doupé, A., Zhao, Z., et al., 2015. Toward a moving target defense for web applications. Proc. IEEE Int. Conf. on Information Reuse and Integration, p.510-517.

[76]Thompson, M., Evans, N., Kisekka, V., 2014. Multiple OS rotational environment an implemented moving target defense. Proc. 7th Int. Symp. on Resilient Control Systems, p.1-6.

[77]Torrieri, D., Zhu, S.C., Jajodia, S., 2013. Cyber maneuver against external adversaries and compromised nodes. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.87-96.

[78]van Leeuwen, B., Stout, W.M.S., Urias, V., 2015. Operational cost of deploying Moving Target Defenses defensive work factors. Proc. Military Communications Conf., p.966-971.

[79]Vikram, S., Yang, C., Gu, G., 2013. NOMAD: towards non-intrusive moving-target defense against web bots. Proc. IEEE Conf. on Communications and Network Security, p.55-63.

[80]Wang, T.Z., Wang, H.M., Liu, B., et al., 2012. Further analyzing the sybil attack in mitigating peer-to-peer botnets. KSII Trans. Internet Inform. Syst. , 6(10):2731-2749.

[81]Xu, J., Guo, P.Y., Zhao, M.Y., et al., 2014. Comparing different moving target defense techniques. Proc. 1st ACM Workshop on Moving Target Defense, p.97-107.

[82]Yackoski, J., Xie, P., Bullen, H., et al., 2011. A self-shielding dynamic network architecture. Proc. Military Communications Conf., p.1381-1386.

[83]Yackoski, J., Bullen, H., Yu, X., et al., 2013a. Applying self-shielding dynamics to the network architecture. In: Jajodia, S., Ghosh, A.K., Subrahmanian, V.S., et al. (Eds.), Moving Target Defense II: Application of Game Theory and Adversarial Modeling. Springer New York, USA, p.97-115.

[84]Yackoski, J., Li, J., DeLoach, S.A., et al., 2013b. Mission-oriented moving target defense based on cryptographically strong network dynamics. Proc. 8th Annual Cyber Security and Information Intelligence Research Workshop, Article 57.

[85]Zaffarano, K., Taylor, J., Hamilton, S., 2015. A quantitative framework for moving target defense effectiveness evaluation. Proc. 2nd ACM Workshop on Moving Target Defense, p.3-10.

[86]Zhang, J., Hu, H.P., Liu, B., 2011. Robustness of RED in mitigating LDoS attack. KSII Trans. Internet Inform. Syst. , 5(5):1085-1100.

[87]Zhang, M., Wang, L., Jajodia, S., et al., 2016. Network diversity: a security metric for evaluating the resilience of networks against zero-day attacks. IEEE Trans. Inform. Foren. Sec. , 11(5):1071-1086.

[88]Zhu, M.H., Hu, Z.S., Liu, P., 2014. Reinforcement learning algorithms for adaptive cyber defense against Heartbleed. Proc. 1st ACM Workshop on Moving Target Defense, p.51-58.

[89]Zhu, Q.Y., Başar, T., 2013. Game-theoretic approach to feedback-driven multi-stage moving target defense. Proc. 4th Int. Conf. on Decision and Game Theory for Security, p.246-263.

[90]Zhuang, R., Zhang, S., DeLoach, S.A., et al., 2012. Simulation-based approaches to studying effectiveness of moving-target network defense. Proc. National Symp. on Moving Target Research, p.1-12.

[91]Zhuang, R., Zhang, S., Bardas, A., et al., 2013. Investigating the application of moving target defenses to network security. Proc. 6th Int. Symp. on Resilient Control Systems, p.162-169.

[92]Zhuang, R., DeLoach, S.A., Ou, X.M., 2014a. A model for analyzing the effect of moving target defenses on enterprise networks. Proc. 9th Annual Cyber and Information Security Research Conf., p.73-76.

[93]Zhuang, R., DeLoach, S.A, Ou, X.M., 2014b. Towards a theory of moving target defense. Proc. 1st ACM Workshop on Moving Target Defense, p.31-40.

[94]Zhuang, R., Bardas, A.G., DeLoach, S.A., et al., 2015. A theory of cyber attacks: a step towards analyzing MTD systems. Proc. 2nd ACM Workshop on Moving Target Defense, p.11-20.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE