Full Text:   <958>

Summary:  <194>

CLC number: TN92

On-line Access: 2024-01-26

Received: 2023-02-27

Revision Accepted: 2024-01-26

Crosschecked: 2023-08-20

Cited: 0

Clicked: 1035

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xuehui WANG

https://orcid.org/0000-0002-1090-5650

Feng SHU

https://orcid.org/0000-0003-0073-1965

Jiangzhou WANG

https://orcid.org/0000-0003-0881-3594

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.12 P.1728-1738

http://doi.org/10.1631/FITEE.2300118


Beamforming design for RIS-aided amplify-and-forward relay networks


Author(s):  Xuehui WANG, Feng SHU, Riqing CHEN, Peng ZHANG, Qi ZHANG, Guiyang XIA, Weiping SHI, Jiangzhou WANG

Affiliation(s):  School of Information and Communication Engineering, Hainan University, Haikou 570228, China; more

Corresponding email(s):   wangxuehui0503@163.com, shufeng0101@163.com

Key Words:  Reconfigurable intelligent surface (RIS), Amplify-and-forward (AF) relay, Beamforming, Phase shift, Semidefinite programming, Successive convex approximation


Xuehui WANG, Feng SHU, Riqing CHEN, Peng ZHANG, Qi ZHANG, Guiyang XIA, Weiping SHI, Jiangzhou WANG. Beamforming design for RIS-aided amplify-and-forward relay networks[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1728-1738.

@article{title="Beamforming design for RIS-aided amplify-and-forward relay networks",
author="Xuehui WANG, Feng SHU, Riqing CHEN, Peng ZHANG, Qi ZHANG, Guiyang XIA, Weiping SHI, Jiangzhou WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="12",
pages="1728-1738",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300118"
}

%0 Journal Article
%T Beamforming design for RIS-aided amplify-and-forward relay networks
%A Xuehui WANG
%A Feng SHU
%A Riqing CHEN
%A Peng ZHANG
%A Qi ZHANG
%A Guiyang XIA
%A Weiping SHI
%A Jiangzhou WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 12
%P 1728-1738
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300118

TY - JOUR
T1 - Beamforming design for RIS-aided amplify-and-forward relay networks
A1 - Xuehui WANG
A1 - Feng SHU
A1 - Riqing CHEN
A1 - Peng ZHANG
A1 - Qi ZHANG
A1 - Guiyang XIA
A1 - Weiping SHI
A1 - Jiangzhou WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 12
SP - 1728
EP - 1738
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300118


Abstract: 
The use of a reconfigurable intelligent surface (RIS) in the enhancement of the rate performance is considered to involve the limitation of the RIS being a passive reflector. To address this issue, we propose a RIS-aided amplify-and-forward (AF) relay network in this paper. By jointly optimizing the beamforming matrix at AF relay and the phase-shift matrices at RIS, two schemes are put forward to address a maximizing signal-to-noise ratio (SNR) problem. First, aiming at achieving a high rate, a high-performance alternating optimization (AO) method based on Charnes–Cooper transformation and semidefinite programming (CCT-SDP) is proposed, where the optimization problem is decomposed into three subproblems solved using CCT-SDP, and rank-one solutions can be recovered using Gaussian randomization. However, the optimization variables in the CCT-SDP method are matrices, leading to extremely high complexity. To reduce the complexity, a low-complexity AO scheme based on Dinkelbachs transformation and successive convex approximation (DT-SCA) is proposed, where the variables are represented in vector form, and the three decoupling subproblems are solved using DT-SCA. Simulation results verify that compared to three benchmarks (i.e., a RIS-assisted AF relay network with random phase, an AF relay network without RIS, and a RIS-aided network without AF relay), the proposed CCT-SDP and DT-SCA schemes can harvest better rate performance. Furthermore, it is revealed that the rate of the low-complexity DT-SCA method is close to that of the CCT-SDP method.

智能超表面辅助放大转发中继网络的波束成形设计

王雪辉1,束锋1,2,陈日清3,张鹏1,张旗1,夏桂阳4,石伟萍2,王江舟5
1海南大学信息与通信工程学院,中国海口市,570228
2南京理工大学电子工程与光电技术学院,中国南京市,210094
3福建农林大学数字福建农业大数据研究院,中国福州市,350002
4安徽农业大学智慧农业研究院,中国合肥市,230036
5肯特大学工程学院,英国坎特伯雷市,CT2 7NT
摘要:使用可重构智能表面(RIS)增强速率性能涉及到RIS作为无源反射器的局限性。为解决这一问题,本文提出RIS辅助放大转发(AF)中继网络。为使信噪比最大化,提出两种方法联合优化AF中继的波束成形矩阵和RIS的相移矩阵。首先,为获得高速率,提出一种基于Charnes-Cooper变换和半定规划(CCT-SDP)的高性能交替优化(AO)方法。其中,将优化问题分解为3个子问题,并通过CCT-SDP和高斯随机化方法分别求解子问题和恢复秩一解。然而,CCT-SDP方法中优化矩阵变量会带来极高复杂度。为降低复杂度,提出一种基于Dinkelbachs变换和连续凸近似(DT-SCA)的低复杂度AO方法。其中,优化变量是向量,并通过DT-SCA方法求解3个解耦的子问题。仿真结果表明,与3个基准(即具有随机相位的RIS辅助的AF中继网络、没有RIS的AF中继网络和没有AF中继的RIS辅助的网络)相比,所提CCT-SDP和DT-SCA方法可以获得更好的速率性能。此外,低复杂度的DT-SCA方法与CCT-SDP方法速率接近。

关键词:可重构智能表面;放大转发(AF)中继;波束成形;相移;半定规划;连续凸近似

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdullah Z, Chen GJ, Lambotharan S, et al., 2020. A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wirel Commun Lett, 9(10):1653-1657.

[2]Abdullah Z, Kisseleff S, Ntontin K, et al., 2022. Double-RIS communication with DF relaying for coverage extension: is one relay enough? IEEE Int Conf on Communications, p.2639-2644.

[3]An JC, Yuen C, Huang CW, et al., 2023a. A tutorial on holographic MIMO communications—part I: channel modeling and channel estimation. IEEE Commun Lett, 27(7):1664-1668.

[4]An JC, Yuen C, Huang CW, et al., 2023b. A tutorial on holographic MIMO communications—part II: performance analysis and holographic beamforming. IEEE Commun Lett, 27(7):1669-1673.

[5]Bie QY, Liu Y, Wang YX, et al., 2022. Deployment optimization of reconfigurable intelligent surface for relay systems. IEEE Trans Green Commun Netw, 6(1):221-233.

[6]Björnson E, Özdogan Ö, Larsson EG, 2020. Intelligent reflecting surface versus decode-and-forward: how large surfaces are needed to beat relaying? IEEE Wirel Commun Lett, 9(2):244-248.

[7]Charnes A, Cooper WW, 1962. Programming with linear fractional functionals. Nav Res Log Q, 9(3-4):181-186.

[8]Chen Z, Tang J, Zhang XY, et al., 2022. Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems. IEEE Trans Wirel Commun, 21(3):1586-1601.

[9]Guan XR, Wu QQ, Zhang R, 2020. Joint power control and passive beamforming in IRS-assisted spectrum sharing. IEEE Commun Lett, 24(7):1553-1557.

[10]Guan XR, Wu QQ, Zhang R, 2022. Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication. IEEE Trans Wirel Commun, 21(6):3764-3778.

[11]Guo HY, Liang YC, Chen J, et al., 2020. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless netwroks. IEEE Trans Wirel Commun, 19(5):3064-3076.

[12]Hong S, Pan CH, Ren H, et al., 2021. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI. IEEE Trans Wirel Commun, 20(4):2487-2501.

[13]Jiang W, Schotten HD, 2022. Intelligent reflecting vehicle surface: a novel IRS paradigm for moving vehicular networks. IEEE Military Communications Conf, p.793-798.

[14]Jiang WH, Chen BL, Zhao J, et al., 2021. Joint active and passive beamforming design for the IRS-assisted MIMOME-OFDM secure communications. IEEE Trans Veh Technol, 70(10):10369-10381.

[15]Khalid W, Shahjalal M, Yu H, 2022. Outage performance analysis of hybrid relay-reconfigurable intelligent surface networks. Proc 27th Asia Pacific Conf on Communications, p.253-254.

[16]Lee J, Shin W, Lee J, 2021. Performance analysis of IRS-assisted LEO satellite communication systems. Int Conf on Information and Communication Technology Convergence, p.323-325.

[17]Li GH, Yue DW, Jin SN, et al., 2022. Hybrid double-RIS and DF-relay for outdoor-to-indoor communication. IEEE Access, 10:126651-126663.

[18]Obeed M, Chaaban A, 2022. Joint beamforming design for multi-user MISO downlink aided by a reconfigurable intelligent surface and a relay. IEEE Trans Wirel Commun, 21(10):8216-8229.

[19]Shen KM, Yu W, 2018. Fractional programming for communication systems—part II: uplink scheduling via matching. IEEE Trans Signal Process, 66(10):2631-2644.

[20]Shi WP, Zhou XB, Jia LQ, et al., 2021a. Enhanced secure wireless information and power transfer via intelligent reflecting surface. IEEE Commun Lett, 25(4):1084-1088.

[21]Shi WP, Li JY, Xia GY, et al., 2021b. Secure multigroup multicast communication systems via intelligent reflecting surface. China Commun, 18(3):39-51.

[22]Shu F, Lu Y, Chen YZ, et al., 2014. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy. Sci China Inform Sci, 57(2):1-11.

[23]Shu F, Teng Y, Li JY, et al., 2021a. Enhanced secrecy rate maximization for directional modulation networks via IRS. IEEE Trans Commun, 69(12):8388-8401.

[24]Shu F, Jiang XY, Liu XY, et al., 2021b. Precoding and transmit antenna subarray selection for secure hybrid spatial modulation. IEEE Trans Wirel Commun, 20(3):1903-1917.

[25]Shu F, Yang LL, Jiang XY, et al., 2022. Beamforming and transmit power design for intelligent reconfigurable surface-aided secure spatial modulation. IEEE J Sel Top Signal Process, 16(5):933-949.

[26]Sun ZW, Wang XH, Feng SL, et al., 2023. Pilot optimization and channel estimation for two-way relaying network aided by IRS with finite discrete phase shifters. IEEE Trans Veh Technol, 72(4):5502-5507.

[27]Tian Z, Chen ZC, Wang M, et al., 2022. Reconfigurable intelligent surface empowered optimization for spectrum sharing: scenarios and methods. IEEE Veh Technol Mag, 17(2):74-82.

[28]Wang MX, Duan W, Zhang GA, et al., 2022. On the achievable capacity of cooperative NOMA networks: RIS or relay? IEEE Wirel Commun Lett, 11(8):1624-1628.

[29]Wang XH, Shu F, Shi WP, et al., 2022. Beamforming design for IRS-aided decode-and-forward relay wireless network. IEEE Trans Green Commun Netw, 6(1):198-207.

[30]Wang XH, Zhang P, Shu F, et al., 2023. Power allocation for IRS-aided two-way decode-and-forward relay wireless network. IEEE Trans Veh Technol, 72(1):1337-1342.

[31]Wei L, Huang CW, Alexandropoulos GC, et al., 2021. Channel estimation for RIS-empowered multi-user MISO wireless communications. IEEE Trans Commun, 69(6):4144-4157.

[32]Wu QQ, Zhang R, 2019. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun, 18(11):5394-5409.

[33]Yang SJ, Lyu W, Xiu Y, et al., 2023. Active 3D double-RIS-aided multi-user communications: two-timescale-based separate channel estimation via Bayesian learning. IEEE Trans Commun, 71(6):3605-3620.

[34]Yildirim I, Kilinc F, Basar E, et al., 2021. Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension. IEEE Commun Lett, 25(5):1692-1696.

[35]Zheng BX, Lin SE, Zhang R, 2022. Intelligent reflecting surface-aided LEO satellite communication: cooperative passive beamforming and distributed channel estimation. IEEE J Sel Areas Commun, 40(10):3057-3070.

[36]Zhou X, Li J, Shu F, et al., 2019. Secure SWIPT for directional modulation-aided AF relaying networks. IEEE J Sel Areas Commun, 37(2):253-268.

[37]Zhou XB, Yan SH, Wu QQ, et al., 2022. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint. IEEE Trans Wirel Commun, 21(1):532-547.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE