Full Text:   <1004>

Summary:  <1022>

CLC number: TP391.4

On-line Access: 2019-10-08

Received: 2018-02-07

Revision Accepted: 2018-05-24

Crosschecked: 2019-09-04

Cited: 0

Clicked: 3220

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chan-fei Wang

http://orcid.org/0000-0003-2493-6500

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.9 P.1259-1265

http://doi.org/10.1631/FITEE.1800096


Semidefinite relaxation aided noncoherent detection in two-way relay transmission


Author(s):  Chan-fei Wang, Ji-ai He, Wei-fang Wang, Ya-mei Xu

Affiliation(s):  School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China

Corresponding email(s):   wangchanfei@bupt.edu.cn, hejiai@lut.cn, wwwf88@126.com, yameixu@126.com

Key Words:  Multiple-symbol differential detection, Generalized likelihood ratio test, Semidefinite relaxation, Two-way relay transmission


Chan-fei Wang, Ji-ai He, Wei-fang Wang, Ya-mei Xu. Semidefinite relaxation aided noncoherent detection in two-way relay transmission[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(9): 1259-1265.

@article{title="Semidefinite relaxation aided noncoherent detection in two-way relay transmission",
author="Chan-fei Wang, Ji-ai He, Wei-fang Wang, Ya-mei Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="9",
pages="1259-1265",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800096"
}

%0 Journal Article
%T Semidefinite relaxation aided noncoherent detection in two-way relay transmission
%A Chan-fei Wang
%A Ji-ai He
%A Wei-fang Wang
%A Ya-mei Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 9
%P 1259-1265
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800096

TY - JOUR
T1 - Semidefinite relaxation aided noncoherent detection in two-way relay transmission
A1 - Chan-fei Wang
A1 - Ji-ai He
A1 - Wei-fang Wang
A1 - Ya-mei Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 9
SP - 1259
EP - 1265
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800096


Abstract: 
A high-performance noncoherent transmission scheme is proposed in the broadcasting phase of a two-way relay transmission (TWRT), where multiple-symbol differential detection (MSDD) is performed because of its excellent detection performance with no channel estimation. Specifically, the generalized likelihood ratio test aided MSDD (GLRT-MSDD) is developed for the down-link. Furthermore, GLRT-MSDD is reformulated and a semidefinite relaxation aided MSDD (SDR-MSDD) is proposed. The reformulation of GLRT-MSDD to SDR-MSDD is desirable owing to its reduced complexity. Performance analysis and the simulations validate that the proposed SDR-MSDD provides the bit-error-rate performance close to that of GLRT-MSDD with reasonable complexity in TWRT.

双向中继传输中基于半定松弛的非相干检测

摘要:提出一种双向中继传输广播阶段高性能非相干传输方案,即不需要信道估计的多符号差分检测算法。在下行阶段首次引入基于广义似然比检验的多符号差分检测(GLRT-MSDD)。进一步转换GLRT-MSDD,得到基于半定松弛的多符号差分检测(SDR-MSDD),此转化过程降低了算法实现的复杂度。性能分析和仿真结果表明,在双向中继传输中,所提SDR-MSDD方法以合理复杂度得到接近于GLRT-MSDD方法的误码性能。

关键词:多符号差分检测;广义似然比检验;半定松弛;双向中继传输

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cui T, Gao FF, Ho T, et al., 2009. Distributed space-time coding for two-way wireless relay networks. IEEE Trans Signal Process, 57(2):658-671.

[2]Dai YY, Pan LD, Dong XD, 2014. Physical-layer network coding aided bi-directional cooperative relays for transmitted reference pulse cluster UWB systems. IEEE Int Conf on Communications, p.5825-5830.

[3]Dai YY, Dong X, Dong XD, 2015. Bidirectional cooperative relay strategies for transmitted reference pulse cluster UWB systems. IEEE Trans Veh Technol, 64(10):4512-4524.

[4]Dang XY, Liu ZT, Li BL, et al., 2016. Noncoherent multiple-symbol detector of binary CPFSK in physical-layer network coding. IEEE Commun Lett, 20(1):81-84.

[5]Dong X, Dong XD, 2010. Bi-directional cooperative relays for transmitted reference pulse cluster UWB systems. IEEE Global Telecommunications Conf, p.1-5.

[6]Gao H, Su X, Lv T, et al., 2011. Physical-layer network coding aided two-way relay for transmitted-reference UWB networks. IEEE Global Telecommunications Conf, p.1-6.

[7]Guo N, Qiu RC, 2006. Improved autocorrelation demodulation receivers based on multiple-symbol detection for UWB communications. IEEE Trans Wirel Commun, 5(8):2026-2031.

[8]Helmberg C, Rendl F, 1998. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math Program, 82(3):291-315.

[9]Jalden J, Martin C, Ottersten B, 2003. Semidefinite programming for detection in linear systems-optimality conditions and space-time decoding. IEEE Int Conf on Acoustics, Speech, and Signal Processing, p.9-12.

[10]Lampe L, Schober R, Pauli V, et al., 2005. Multiple-symbol differential sphere decoding. IEEE Trans Commun, 53(12):1981-1985.

[11]Leib H, Pasupathy S, 1988. The phase of a vector perturbed by Gaussian noise and differentially coherent receivers. IEEE Trans Inform Theory, 34(6):1491-1501.

[12]Lottici V, Tian Z, 2008. Multiple symbol differential detection for UWB communications. IEEE Trans Wirel Commun, 7(5):1656-1666.

[13]Lv T, Wang CF, Gao H, 2017. Factor graph aided multiple-symbol differential detection in the broadcasting phase of a network coding based UWB relay system. IEEE Trans Veh Technol, 66(6):5364-5371.

[14]Ma WK, Davidson TN, Wong KM, et al., 2002. Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Trans Signal Process, 50(4):912-922.

[15]Mao ZW, Wang XM, Wang XF, 2007. Semidefinite programming relaxation approach for multiuser detection of QAM signals. IEEE Trans Wirel Commun, 6(12):4275-4279.

[16]Quek TQS, Win MZ, 2005. Analysis of UWB transmitted-reference communication systems in dense multipath channels. IEEE J Sel Areas Commun, 23(9):1863-1874.

[17]Rankov B, Wittneben A, 2007. Spectral efficient protocols for half-duplex fading relay channels. IEEE J Sel Areas Commun, 25(2):379-389.

[18]Rendi F, Vanderbei RJ, Wolkowicz H, 1995. Max-min eigenvalue problems, primal-dual interior point algorithms, and trust region subproblemst. Optim Methods Softw, 5(1):1-16.

[19]Simon MK, Alouini M, 1998. A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels. IEEE Trans Commun, 46(12):1625-1638.

[20]To D, Choi J, Kim I, 2010. Error probability analysis of bidirectional relay systems using Alamouti scheme. IEEE Commun Lett, 14(8):758-760.

[21]Wang CF, Lv T, Gao H, et al., 2014. Generalized likelihood ratio test multiple-symbol detection for MIMO-UWB: a semidefinite relaxation approach. IEEE Wireless Communications and Networking Conf, p.1276-1280.

[22]Wang CF, Lv T, Gao H, et al., 2016. A belief propagation-based framework for soft multiple-symbol differential detection. IEEE Trans Wirel Commun, 15(10):7128-7142.

[23]Wang TT, Lv T, Gao H, et al., 2013. BER analysis of decision-feedback multiple-symbol detection in noncoherent MIMO ultrawideband systems. IEEE Trans Veh Technol, 62(9):4684-4690.

[24]Win MZ, Scholtz RA, 1998. On the energy capture of ultra wide bandwidth signals in dense multipath environments. IEEE Commun Lett, 2(9):245-247.

[25]Win MZ, Scholtz RA, 2000. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans Commun, 48(4):679-689.

[26]Zeinalpour-Yazdi Z, Nasiri-Kenari M, Aazhang B, 2010. Bit error probability analysis of UWB communications with a relay node. IEEE Trans Wirel Commun, 9(2):802-813.

[27]Zhou Q, Ma XL, 2012. Designing low-complexity near-optimal multiple-symbol detectors for impulse radio UWB systems. IEEE Trans Signal Process, 60(5):2460-2469.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE