Full Text:   <2311>

CLC number: TN925.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-06-01

Cited: 1

Clicked: 7148

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhen-hua Yuan

http://orcid.org/0000-0003-3619-4831

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.6 P.796-807

http://doi.org/10.1631/FITEE.1700023


Correlated channel model-based secure communications in dual-hop wireless communication networks


Author(s):  Zhen-hua Yuan, Chen Chen, Xiang Cheng, Guo-cheng Lv, Liu-qing Yang, Ye Jin

Affiliation(s):  State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, China; more

Corresponding email(s):   yuanzhenhua@pku.edu.cn, c.chen@pku.edu.cn, lqyang@engr.colostate.edu

Key Words:  Physical layer security, Relay beamforming, Correlated channels, Ergodic secrecy rate


Zhen-hua Yuan, Chen Chen, Xiang Cheng, Guo-cheng Lv, Liu-qing Yang, Ye Jin. Correlated channel model-based secure communications in dual-hop wireless communication networks[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 796-807.

@article{title="Correlated channel model-based secure communications in dual-hop wireless communication networks",
author="Zhen-hua Yuan, Chen Chen, Xiang Cheng, Guo-cheng Lv, Liu-qing Yang, Ye Jin",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="796-807",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700023"
}

%0 Journal Article
%T Correlated channel model-based secure communications in dual-hop wireless communication networks
%A Zhen-hua Yuan
%A Chen Chen
%A Xiang Cheng
%A Guo-cheng Lv
%A Liu-qing Yang
%A Ye Jin
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 796-807
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700023

TY - JOUR
T1 - Correlated channel model-based secure communications in dual-hop wireless communication networks
A1 - Zhen-hua Yuan
A1 - Chen Chen
A1 - Xiang Cheng
A1 - Guo-cheng Lv
A1 - Liu-qing Yang
A1 - Ye Jin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 796
EP - 807
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700023


Abstract: 
This article is focused on secure relay beamformer design with a correlated channel model in the relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information with the help of an amplify-and-forward (AF) relay equipped with multiple antennas, and the legitimate and eavesdropping channels are correlated. The relay cannot obtain the instantaneous channel state information (CSI) of the eavesdropper, and has only the knowledge of correlation information between the legitimate and eavesdropping channels. Depending on this information, we derive the conditional distribution of the eavesdropping channel. Two beamformers at the relay are studied for the approximate ergodic secrecy rate: (1) the generalized match-and-forward (GMF) beamformer to maximize the legitimate channel rate, and (2) the general-rank beamformer (GRBF). In addition, one lower-bound-maximizing (LBM) beamformer at the relay is discussed for maximizing the lower bound of the ergodic secrecy rate. We find that the GMF beamformer is the optimal rank-one beamformer, that the GRBF is the iteratively optimal beamformer, and that the performance of the LBM beamformer for the ergodic secrecy rate gets close to that of the GRBF for the approximate secrecy rate. It can also be observed that when the relay has lower power or the channel gain of the second hop is low, the performance of the GMF beamformer surpasses that of the GRBF. Numerical results are presented to illustrate the beamformers’ performance.

基于相关信道模型的两跳无线网络安全通信研究

概要:主要研究在相关信道模型条件下两跳无线通信网络的中继物理层安全波束成形方案设计问题。系统模型由1个发送节点、1个合法接收节点、1个窃听节点和1个采用放大转发策略的中继节点构成,其中中继节点装备多天线,而其他节点都装备单天线,窃听节点靠近合法接收节点进行窃听,从而使得二者与中继节点之间的信道具有相关性。中继节点无法获得窃听信道的瞬时信道状态信息,只可获得合法信道的瞬时状态信息,以及合法信道与窃听信道之间的相关性信息,据此中继节点可推导出窃听信道状态的条件概率分布。以系统近似遍历安全容量为优化目标,研究了2种中继波束成形方案:(1)最大化合法信道容量的”广义匹配转发方案”;(2)”普通阶波束成形方案”。另外,还讨论了基于遍历安全容量下界的”下界最优化波束成形方案”。与上述两方案比对,”广义匹配转发方案”是最优的秩−1方案,”普通阶波束成形方案”则是基于近似遍历安全容量的迭代最优的中继转发方案。通过仿真对各波束成形方案的性能进行比较,验证了本文的分析。从仿真结果还可以看出:当中继节点发送功率较低,或者第二跳信道增益较低时,”广义匹配转发方案”的性能优于”普通阶波束成形方案”。

关键词:物理层安全;中继波束成形;相关信道;遍历安全速率;凸优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barkat, M., 2005. Signal Detection and Estimation. Artech House.

[2]Chen, L., 2011. Physical layer security for cooperative relaying in broadcast networks. Military Communications Conf., p.91-96.

[3]Cheng, X., Wang, C., Wang, H., et al., 2012. Cooperative MIMO channel modeling and multi-link spatial correlation properties. IEEE J. Sel. Areas Commun., 30(2):388-396.

[4]Choi, J., 2016. A robust beamforming approach to guarantee instantaneous secrecy rate. IEEE Trans. Wirel. Commun., 15(2):1076-1085.

[5]Csiszár, I., Korner, J., 1978. Broadcast channels with confidential messages. IEEE Trans. Inform. Theory, 24(3):339-348.

[6]Dong, L., Han, Z., Petropulu, A.P., et al., 2010. Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process., 58(3):1875-1888.

[7]Ferdinand, N.S., da Costa, D.B., de Almeida, A.L.F., et al., 2014. Physical layer secrecy performance of TAS wiretap channels with correlated main and eavesdropper channels. IEEE Wirel. Commun. Lett., 3(1):86-89.

[8]Geraci, G., Al-Nahari, A.Y., Yuan, J., et al., 2013. Linear precoding for broadcast channels with confidential messages under transmit-side channel correlation. IEEE Commun. Lett., 17(6):1164-1167.

[9]Ghose, S., Bose, R., 2013. Power allocation strategy using node cooperation for transmit power minimization under correlated fading. National Conf. on Communications, p.1-5.

[10]Kim, A.Y., Cho, H.N., Lee, J.W., et al., 2009. Allocation of transmit power in spatially-correlated dual-hop MIMO relay channels. 9th Int. Symp. on Communications and Information Technology, p.332-336.

[11]Kobayashi, M., Caire, G., 2007. Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE J. Sel. Areas Commun., 25(7):1468-1477.

[12]Krikidis, I., 2010. Opportunistic relay selection for cooperative networks with secrecy constraints. IET Commun., 4(15):1787-1791.

[13]Lee, J.H., 2015. Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wirel. Pers. Commun., 83(4):3033-3044.

[14]Leung-Yan-Cheong, S., Hellman, M.E., 1978. The Gaussian wire-tap channel. IEEE Trans. Inform. Theory, 24(4):451-456.

[15]Li, J., Petropulu, A.P., Weber, S., 2011. On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process., 59(10):4985-4997.

[16]Luo, Z., Ma, W.K., So, A.M.C., et al., 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag., 27(3):20-34.

[17]Magnus, J.R., Neudecker, H., 1988. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley.

[18]McKay, M.R., Collings, I.B., 2005. General capacity bounds for spatially correlated Rician MIMO channels. IEEE Trans. Inform. Theory, 51(9):3121-3145.

[19]Tulino, A.M., Lozano, A., Verdu, S., 2005. Impact of antenna correlation on the capacity of multiantenna channels. IEEE Trans. Inform. Theory, 51(7):2491-2509.

[20]Wang, X., Wang, K., Zhang, X., 2013. Secure relay beamforming with imperfect channel side information. IEEE Trans. Veh. Technol., 62(5):2140-2155.

[21]Wang, X., Su, Z., Wang, G., 2015. Relay selection for secure backscatter wireless communications. Electron. Lett., 51(12):951-952.

[22]Wyner, A.D., 1975. The wire-tap channel. Bell Syst. Techn. J., 54(8):1355-1387.

[23]Yin, X., Cheng, X., 2016. Propagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications. Wiley-IEEE Press.

[24]Yuan, Z., Chen, C., Bai, L., et al., 2016. Secure relay beamforming with correlated channel models in dual-hop wireless communication networks. IEEE GLOBECOM, p.1-6.

[25]Zhang, M., Wen, M., Cheng, X., et al., 2016. A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation. IEEE Trans. Wirel. Commun., 15(9):6356-6370.

[26]Zhang, R., Cheng, X., Yang, L., 2016a. Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Trans. Wirel. Commun., 15(8):5651-5663.

[27]Zhang, R., Cheng, X., Yang, L., 2016b. Joint power and access control for physical layer security in D2D communications underlaying cellular networks. IEEE Int. Conf. on Communications, p.1-6.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE