Full Text:   <1099>

CLC number: TP273

On-line Access: 2019-07-08

Received: 2017-11-07

Revision Accepted: 2018-09-04

Crosschecked: 2019-06-11

Cited: 0

Clicked: 3294

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jiu-cai Jin

http://orcid.org/0000-0002-4425-5297

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.6 P.751-759

http://doi.org/10.1631/FITEE.1700732


A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle


Author(s):  Jiu-cai Jin, Jie Zhang, Zhi-chao Lv

Affiliation(s):  First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; more

Corresponding email(s):   jinjiucai@fio.org.cn

Key Words:  Unmanned surface vehicle, Data collection, Underwater acoustic communication, Gradient climbing, Extremum seeking


Share this article to: More |Next Article >>>

Jiu-cai Jin, Jie Zhang, Zhi-chao Lv. A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(6): 751-759.

@article{title="A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle",
author="Jiu-cai Jin, Jie Zhang, Zhi-chao Lv",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="6",
pages="751-759",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700732"
}

%0 Journal Article
%T A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle
%A Jiu-cai Jin
%A Jie Zhang
%A Zhi-chao Lv
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 6
%P 751-759
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700732

TY - JOUR
T1 - A novel gradient climbing control for seeking the best communication point for data collection from a seabed platform using a single unmanned surface vehicle
A1 - Jiu-cai Jin
A1 - Jie Zhang
A1 - Zhi-chao Lv
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 6
SP - 751
EP - 759
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700732


Abstract: 
A novel controller for finding the best communication point is proposed for collecting data from a seabed platform by a single unmanned surface vehicle (USV) using underwater acoustic communication (UAC). As far as we know, extremum seeking based on climbing control is usually implemented by multiple vehicles or agents because of the large range of measurement and easy acquisition of gradient estimation. A single vehicle cannot rapidly estimate the field because of the limited extent for measurement; therefore, it is difficult for a single vehicle to seek the extremum point in a field. In this study, an oscillation motion (OM) is designed for a single USV to acquire UAC’s link strength data between the seabed platform and the USV. The field for UAC’s link strength is updated using new measurement from an OM of the USV based on a multi-variable weight linear iteration method. A controller for seeking the best UAC’s point of the USV is designed using gradient climbing and artificial potential considering iterative estimation of an unknown field and an OM operation, and the stability is proved. The reliability and efficiency are shown in simulation results.

一种用于寻找无人船回收海床基数据最佳通信点的梯度上升控制法

摘要:给出了一种在无人船声学回收海床基数据时寻找最佳通信点的控制方法。众所周知,梯度上升极值寻找法常应用于多平台或多智能体,这是因为多平台能大范围测量且易于梯度估计。单一平台测量范围有限,不能快速估计测量场,难以迅速获得测量场极值。本文提出一种无人船振荡运动形式,以获取海床基与无人船间水声通信链路强度数据。基于多元加权线性递归法,利用无人船振荡运动获取的新数据,不断更新水声通信链路强度场。基于梯度上升和人工势场方法,考虑未知场的递归估计,设计无人船最佳通信点控制器,并证明其稳定性。仿真结果表明该算法可靠、高效。

关键词:无人船;数据回收;水声通信;梯度上升;极值寻找

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bachmayer R, Leonard NE, 2002. Vehicle networks for gradient descent in a sampled environment. Proc 41st IEEE Conf on Decision and Control, p.112-117.

[2]Bingham B, Kraus N, Howe B, et al., 2012. Passive and active acoustics using an autonomous wave glider. J Field Robot, 29(6):911-923.

[3]Biyik E, Arcak M, 2008. Gradient climbing information via extremum seeking and passivity-based coordination rules. Asian J Contr, 10(2):201-211.

[4]Brown H, Jenkins L, Meadows G, et al., 2010. BathyBoat: an autonomous surface vessel for stand-alone survey and underwater vehicle network supervision. Mar Technol Soc J, 44(4):20-29.

[5]Choi J, Oh S, Horowitz R, 2009. Distributed learning and cooperative control for multi-agent systems. Automatica, 45(12):2802-2814.

[6]Curcio J, Leonard J, Vaganay J, et al., 2005. Experiments in moving baseline navigation using autonomous surface craft. IEEE Conf on OCEANS, p.730-735.

[7]Gao B, Li HB, Li W, et al., 2016. 3D Moth-inspired chemical plume tracking and adaptive step control strategy. Adapt Behav, 24(1):52-65.

[8]Han GJ, Li SS, Zhu CS, et al., 2017. Probabilistic neighborhood-based data collection algorithms for 3D underwater acoustic sensor networks. Sensors, 17(2):316.

[9]Hollinger GA, Choudhary S, Qarabaqi P, et al., 2012. Underwater data collection using robotic sensor networks. IEEE J Sel Areas Commun, 30(5):899-911.

[10]Jin JC, Zhang J, Lv ZC, et al., 2016. Active and passive underwater acoustic application using an unmanned surface vehicle. IEEE Conf on OCEANS, p.1-6.

[11]Khong SZ, Tan Y, Manzie C, et al., 2015. Extremum seeking of dynamical systems via gradient descent and stochastic approximation methods. Automatica, 56:44-52.

[12]Lawson RA, Graham D, Stalin S, et al., 2012. The next generation Easy-to-Deploy (ETD) tsunami assessment buoy. IEEE Conf on OCEANS, p.1-8.

[13]Martins R, de Sousa JB, Afonso CC, et al., 2011. REP10 AUV: shallow water operations with heterogeneous autonomous vehicles. IEEE Conf on OCEANS, p.1-6.

[14]Matos A, Silva E, Cruz N, et al., 2013. Development of an unmanned capsule for large-scale maritime search and rescue. IEEE Conf on OCEANS, p.1-8.

[15]Murphy C, Walls JM, Schneider T, et al., 2014. CAPTURE: a communications architecture for progressive transmission via underwater relays with eavesdropping. IEEE J Ocean Eng, 39(1):120-130.

[16]Nađ Đ, Mišković N, Mandić F, 2015. Navigation, guidance and control of an overactuated marine surface vehicle. Ann Rev Contr, 40:172-181.

[17]Naeem W, Xu T, Sutton R, et al., 2008. The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring. Proc Inst Mech Eng M-J Eng Mar Environ, 222(2):67-79.

[18]Ögren P, Fiorelli E, Leonard NE, 2004. Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans Automat Contr, 49(8):1292-1302.

[19]Park JH, Kang MJ, Kim TY, et al., 2017. Development of an unmanned surface vehicle system for the 2014 Maritime RobotX Challenge. J Field Robot, 34(4):644-665.

[20]Reed BL, Leighton J, Stojanovic M, et al., 2016. Multi-vehicle dynamic pursuit using underwater acoustics. In: Inaba M, Corke P (Eds.), Robotics Research. Springer Tracts in Advanced Robotics. Springer Press, Berlin, Germany, p.79-94.

[21]Santos N, Matos A, Cruz N, 2008. Navigation of an autonomous underwater vehicle in a mobile network. IEEE Conf on OCEANS, p.1-5.

[22]Sinisterra AJ, Dhanak MR, von Ellenrieder K, 2017. Stereovision-based target tracking system for USV operations. Ocean Eng, 133:197-214.

[23]Stojanovic M, 2006. On the relationship between capacity and distance in an underwater acoustic communication channel. Proc 1st ACM Int Workshop on Underwater Networks, p.41-47.

[24]Stojanovic M, Freitag L, 2013. Recent trends in underwater acoustic communications. Mar Technol Soc J, 47(5):45- 50.

[25]Stojanovic M, Preisig J, 2009. Underwater acoustic communication channels propagation models and statistical characterization. IEEE Commun Mag, 47(1):84-89.

[26]Suzuki N, Kitajima H, Kaba H, et al., 2015. An experiment of real-time data transmission of sonar images from cruising UUV to distant support vessel via USV: development of underwater real-time communication system (URCS) by parallel cruising. IEEE Conf on OCEANS, p.1-6.

[27]Zhang FM, Leonard NE, 2010. Cooperative filters and control for cooperative exploration. IEEE Trans Autom Contr, 55(3):650-663.

[28]Zhou FQ, Lu XD, 2009. Theory of Optimal Estimation. Higher Education Press, Beijing, China, p.16-19 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE