CLC number: TN24
On-line Access: 2019-05-14
Received: 2018-07-04
Revision Accepted: 2018-09-09
Crosschecked: 2019-04-11
Cited: 0
Clicked: 5523
Yu Liu, Hao-tian Bao, Yi-ming Zhang, Zhi-ke Zhang, Yun-shan Zhang, Xiang-fei Chen, Jun Lu, Yue-chun Shi, Jia-shun Zhang, Liang-liang Wang, Jun-ming An, Ning-hua Zhu. 1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 490-497.
@article{title="1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA",
author="Yu Liu, Hao-tian Bao, Yi-ming Zhang, Zhi-ke Zhang, Yun-shan Zhang, Xiang-fei Chen, Jun Lu, Yue-chun Shi, Jia-shun Zhang, Liang-liang Wang, Jun-ming An, Ning-hua Zhu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="490-497",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800371"
}
%0 Journal Article
%T 1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA
%A Yu Liu
%A Hao-tian Bao
%A Yi-ming Zhang
%A Zhi-ke Zhang
%A Yun-shan Zhang
%A Xiang-fei Chen
%A Jun Lu
%A Yue-chun Shi
%A Jia-shun Zhang
%A Liang-liang Wang
%A Jun-ming An
%A Ning-hua Zhu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 490-497
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800371
TY - JOUR
T1 - 1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA
A1 - Yu Liu
A1 - Hao-tian Bao
A1 - Yi-ming Zhang
A1 - Zhi-ke Zhang
A1 - Yun-shan Zhang
A1 - Xiang-fei Chen
A1 - Jun Lu
A1 - Yue-chun Shi
A1 - Jia-shun Zhang
A1 - Liang-liang Wang
A1 - Jun-ming An
A1 - Ning-hua Zhu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 490
EP - 497
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800371
Abstract: The design and fabrication of a compact and low-cost 4×25-Gb/s transmitter optical sub-assembly (TOSA) and receiver optical sub-assembly (ROSA) using a hybrid integrated technique are reported. TOSA and ROSA are developed without thermoelectric cooler for coarse wavelength division multiplexing applications. Physical dimension of the packaged optical sub- assembly is limited to 11.5 mm×5.4 mm×5.4 mm. The design of TOSA and ROSA is employed using a silica-based arrayed waveguide grating chip to select the specific channel wavelength at O-band. In TOSA, the wavelength of four 1.3-μm discrete directly modulated laser chips is well controlled based on the reconstruction equivalent chirp technique. In the back-to-back transmission test, bit error rates for all lanes of cascade of the TOSA and ROSA are small. A clear opening eye diagram is obtained.
[1]Baek Y, Han YT, Lee CW, et al., 2012. Optical components for 100G ethernet transceivers. Proc 17th Opto- Electronics and Communications Conf, p.218-219.
[2]Dai HQ, An JM, Wang Y, et al., 2014. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate. J Semicond, 35(10):104010.
[3]Dai YT, Chen XF, 2007. DFB semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Expr, 15(5):2348-2353.
[4]Doi Y, Oguma M, Yoshimatsu T, et al., 2015. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s Ethernet. J Lightw Technol, 33(15):3286- 3292.
[5]Dong P, Liu X, Chandrasekhar S, et al., 2014. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quant Electr, 20(4):150-157.
[6]Kanazawa S, Kobayashi W, Ueda Y, et al., 2016. 30-km error- free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gb application. J Lightw Technol, 34(15):3646-3652.
[7]Kang SK, Lee JK, Lee JC, et al., 2010. A compact 4×10-Gb/s CWDM ROSA module for 40G Ethernet optical transceiver. Proc 60th Electronic Components and Technology Conf, p.2001-2005.
[8]Li CY, An JM, Zhang JS, et al., 2018. 4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies. Chin Opt Lett, 16(6):060603.
[9]Machado LM, Delrosso G, Borin F, et al., 2014. Advanced optical communication systems and devices. Proc 5th Electronics System-Integration Technology Conf, p.1-4.
[10]Ohyama T, Doi Y, Kobayashi W, et al., 2016. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer. J Lightw Technol, 34(3):1038-1046.
[11]Zhang YS, Liu Y, Lu J, et al., 2017. DFB laser arrays based on the REC technique and their applications in radio-over- fiber systems. Chin Opt Lett, 15(1):010005.
[12]Zhang ZK, Liu Y, An JM, et al., 2018. 112 Gbit/s transmitter optical subassembly based on hybrid integrated directly modulated lasers. Chin Opt Lett, 16(6):062501.
[13]Zhao ZP, Liu Y, Zhang ZK, et al., 2016. 1.5μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application. Chin Opt Lett, 14(12):45-49.
[14]Zhong KP, Zhou X, Huo JH, et al., 2017. Amplifier-less transmission of single channel 112 Gbit/s PAM4 signal over 40km using 25G EML and APD at O band. Proc European Conf on Optical Communication, p.1-3.
Open peer comments: Debate/Discuss/Question/Opinion
<1>