CLC number: O439
On-line Access: 2019-05-14
Received: 2019-01-09
Revision Accepted: 2019-04-17
Crosschecked: 2019-04-17
Cited: 0
Clicked: 7037
Ting-yun Wang, Fu-fei Pang, Su-juan Huang, Jian-xiang Wen, Huan-huan Liu, Li-bo Yuan. Recent developments in novel silica-based optical fibers[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4): 481-489.
@article{title="Recent developments in novel silica-based optical fibers",
author="Ting-yun Wang, Fu-fei Pang, Su-juan Huang, Jian-xiang Wen, Huan-huan Liu, Li-bo Yuan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="4",
pages="481-489",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900017"
}
%0 Journal Article
%T Recent developments in novel silica-based optical fibers
%A Ting-yun Wang
%A Fu-fei Pang
%A Su-juan Huang
%A Jian-xiang Wen
%A Huan-huan Liu
%A Li-bo Yuan
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 4
%P 481-489
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900017
TY - JOUR
T1 - Recent developments in novel silica-based optical fibers
A1 - Ting-yun Wang
A1 - Fu-fei Pang
A1 - Su-juan Huang
A1 - Jian-xiang Wen
A1 - Huan-huan Liu
A1 - Li-bo Yuan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 4
SP - 481
EP - 489
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900017
Abstract: We have summarized our recent work in the area of novel silica-based optical fibers, which can be classified into two types: silica optical fiber doped with special elements including Bi, Al, and Ce, and micro-structured multi-core fibers. For element-doped optical fiber, the Bi/Al co-doped silica fibers could exhibit a fluorescence spectrum covering the wavelength range between 1000 and 1400 nm with a full width at half maximum (FWHM) of about 150 nm, which enables its use in fiber amplifiers and laser systems. The Ce-doped fiber’s center wavelengths of excitation and emission are about 340 and 430 nm, respectively. The sapphire-derived fiber (SDF) with high alumina dopant concentration in the core can form mullite through heating and cooling with arc-discharge treatment. This SDF can be further developed for an intrinsic Fabry-Perot interferometric that can withstand 1200 °C, which allows it to be used in high-temperature sensing applications. Owing to the strong evanescent field, micro- structured multi-core fiber can be used in a wide range of applications in biological fiber optic sensing, chemical measurement, and interference-related devices. Coaxial-core optical fiber is another novel kind of silica-based optical fiber that has two coaxial waveguide cores and can be used for optical trapping and micro-particle manipulation by generating a highly focused conical optical field. The recent developments of these novel fibers are discussed.
[1]Alshourbagy M, Bigotta S, Herbert D, et al., 2007. Optical and scintillation properties of Ce3+ doped YALO3 crystal fibers grown by μ-pulling down technique. J Cryst Growth, 303(2):500-505.
[2]Benabid F, Knight JC, Russell PJSt, 2002. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt Expr, 10(21):1195-1203.
[3]Chen H, Buric M, Ohodnicki PR, et al., 2018. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl Phys Rev, 5(1): 011102.
[4]Cheng TL, Kanou Y, Deng DH, et al., 2014. Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference. Opt Expr, 22(11):13322-13329.
[5]Chu YS, Jing R, Zhang JZ, et al., 2016. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci Rep, 6:33865.
[6]Deng HC, Qi CC, Zhang XT, et al., 2015. Highly focused conical optical field for pico-newton scale force sensing. J Lightw Technol, 33(12):2486-2491.
[7]Deng HC, Zhang Y, Yuan TT, et al., 2017. Fiber-based optical gun for particle shooting. ACS Photon, 4(3):642-648.
[8]Dianov EM, 2012. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl, 1(5):e12.
[9]Dragic P, Ballato J, Ballato A, et al., 2012a. Mass density and the brillouin spectroscopy of aluminosilicate optical fibers. Opt Mater Expr, 2(11):1641-1654.
[10]Dragic P, Hawkins T, Foy P, et al., 2012b. Sapphire-derived all-glass optical fibres. Nat Photon, 6(9):627-633.
[11]Dvoyrin VV, Mashinsky VM, Bulatov LI, et al., 2006. Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers. Opt Lett, 31(20):2966-2968.
[12]Eggleton BJ, Kerbage C, Westbrook PS, et al., 2001. Microstructured optical fiber devices. Opt Expr, 9(13):698-713.
[13]Elsmann T, Lorenz A, Yazd NS, et al., 2014. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Opt Expr, 22(22):26825-26833.
[14]Fujimoto Y, Nakatsuka M, 2003. Optical amplification in bismuth-doped silica glass. Appl Phys Lett, 82(19):3325.
[15]Galeener FL, 1979. Band limits and the vibrational spectra of tetrahedral glasses. Phys Rev B, 19(8):4292-4297.
[16]Geernaert T, Luyckx G, Voet E, et al., 2008. Transversal load sensing with fiber Bragg gratings in microstructured optical fibers. IEEE Photon Technol Lett, 21(1):6-8.
[17]George SM, 2009. Atomic layer deposition: an overview. Chem Rev, 110(1):111-131.
[18]Gherardi L, Marelli P, Serra A, et al., 1993. Radiation effects on doped silica-core optical fibers. Nucl Phys B, 32:436- 440.
[19]Grobnic D, Mihailov SJ, Ballato J, et al., 2015. Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. Optica, 2(4):313-322.
[20]Guan CY, Tian FJ, Dai Q, et al., 2011. Characteristics of embedded-core hollow optical fiber. Opt Expr, 19(21): 20069-20078.
[21]Han YG, Lee YJ, Kim GH, et al., 2006. Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application. IEEE Photon Technol Lett, 18(16):1783-1785.
[22]Hautakorpi M, Mattinen M, Ludvigsen H, 2008. Surface- plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Expr, 16(12):8427-8432.
[23]Hong L, Pang FF, Liu HH, et al., 2017. Refractive index modulation by crystallization in sapphire-derived fiber. IEEE Photon Technol Lett, 29(9):723-726.
[24]Huang J, Lan XW, Song Y, et al., 2015. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing. IEEE Photon Technol Lett, 27(13): 1398-1401.
[25]Jewart C, Chen KP, McMillen B, et al., 2006. Sensitivity enhancement of fiber Bragg gratings to transverse stress by using microstructural fibers. Opt Lett, 31(15):2260- 2262.
[26]Jin XQ, Gomez A, Shi K, et al., 2016. Mode coupling effects in ring-core fibers for space-division multiplexing systems. J Lightw Technol, 34(14):3365-3372.
[27]Koao LF, Swart HC, Obed RI, et al., 2011. Synthesis and characterization of Ce3+ doped silica (SiO2) nanoparticles. J Lumin, 131(6):1249-1254.
[28]Liu B, Yu ZZ, Hill C, et al., 2016. Sapphire-fiber-based distributed high-temperature sensing system. Opt Lett, 41(18):4405-4408.
[29]Liu CN, Huang YC, Lin YS, et al., 2014. Fabrication and characteristics of Ce-doped fiber for high-resolution OCT source. IEEE Photon Technol Lett, 26(15):1499-1502.
[30]Pasquarello A, Car R, 1998. Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys Rev Lett, 80(23):5145-5147.
[31]Poletti F, 2014. Nested antiresonant nodeless hollow core fiber. Opt Expr, 22(20):23807-23828.
[32]Puurunen RL, 2005. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys, 97(12):121301.
[33]Rizzolo S, Marin E, Morana A, et al., 2016. Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments. J Lightw Technol, 34(19):4460-4465.
[34]Russell PSJ, 2006. Photonic-crystal fibers. J Lightw Technol, 24(12):4729-4749.
[35]Seng F, Stan N, King R, et al., 2017. Optical sensing of electric fields in harsh environments. J Lightw Technol, 35(4): 669-676.
[36]Sun XX, Wen JX, Guo Q, et al., 2017. Fluorescence properties and energy level structure of Ce-doped silica fiber materials. Opt Mater Expr, 7(3):751-759.
[37]Tian FJ, Yuan LB, Dai Q, et al., 2011. Embedded multicore hollow fiber with high birefringence. Appl Opt, 50(33): 6162-6167.
[38]Vedda A, Chiodini N, Di Martino D, et al., 2004. Ce3+-doped fibers for remote radiation dosimetry. Appl Phys Lett, 85(26):6356.
[39]Wang AB, Gollapudi S, Murphy KA, et al., 1992. Sapphire- fiber-based intrinsic Fabry-Perot interferometer. Opt Lett, 17(14):1021-1023.
[40]Wang TY, Zeng XL, Wen JX, et al., 2009. Characteristics of photoluminescence and Raman spectra of INP doped silica fiber. Appl Surf Sci, 255(17):7791-7793.
[41]Wen JX, Wang J, Dong YH, et al., 2015. Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method. Appl Surf Sci, 349:287- 291.
[42]Xie HM, Dabkiewicz P, Ulrich R, et al., 1986. Side-hole fiber for fiber-optic pressure sensing. Opt Lett, 11(5):333-335.
[43]Xu J, Liu HH, Pang FF, et al., 2017. Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters. Opt Mater Expr, 7(4): 1406.
[44]Yan HW, Zhang ET, Zhao BY, et al., 2012. Free-space propagation of guided optical vortices excited in an annular core fiber. Opt Expr, 20(16):17904-17915.
[45]Yang XH, Zhao QK, Qi XX, et al., 2018. In-fiber integrated gas pressure sensor based on a hollow optical fiber with two cores. Sens Actuat A, 272:23-27.
[46]Yu Z, Liu ZH, Yang J, et al., 2012. A non-contact single optical fiber multi-optical tweezers probe: design and fabrication. Opt Commun, 285(20):4068-4071.
[47]Yuan LB, Liu ZH, Yang J, et al., 2008. Twin-core fiber optical tweezers. Opt Expr, 16(7):4559-4566.
[48]Yuan TT, Zhong X, Guan CY, et al., 2015. Long period fiber grating in two-core hollow eccentric fiber. Opt Expr, 23(26):33378-33385.
[49]Zhang JZ, Sathi ZM, Luo YH, et al., 2013. Toward an ultra- broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830nm laser diode pump. Opt Expr, 21(6):7786-7792.
[50]Zhao HY, Farrell G, Wang PF, et al., 2016. Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers. IEEE Photon Technol Lett, 28(4): 461-464.
[51]Zhao QC, Luo YH, Wang WY, et al., 2017. Enhanced broadband near-IR luminescence and gain spectra of bismuth/ erbium co-doped fiber by 830 and 980 nm dual pumping. AIP Adv, 7(4):045012.
[52]Zhu L, Zhu GX, Wang AD, et al., 2018. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Opt Lett, 43(8):1890-1893.
Open peer comments: Debate/Discuss/Question/Opinion
<1>