CLC number: O313
On-line Access: 2020-04-21
Received: 2019-01-10
Revision Accepted: 2019-05-25
Crosschecked: 2020-03-06
Cited: 0
Clicked: 5410
Cem Civelek, Özge Cihanbeğendi. Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(4): 629-634.
@article{title="Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function",
author="Cem Civelek, Özge Cihanbeğendi",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="4",
pages="629-634",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900014"
}
%0 Journal Article
%T Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function
%A Cem Civelek
%A Özge Cihanbeğendi
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 4
%P 629-634
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900014
TY - JOUR
T1 - Construction of a new Lyapunov function for a dissipative gyroscopic system using the residual energy function
A1 - Cem Civelek
A1 - Özge Cihanbeğendi
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 4
SP - 629
EP - 634
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900014
Abstract: In a dissipative gyroscopic system with four degrees of freedom and tensorial variables in contravariant (right upper index) and covariant (right lower index) forms, a Lagrangian-dissipative model, i.e., {L, D}-model, is obtained using second-order linear differential equations. The generalized elements are determined using the {L, D}-model of the system. When the prerequisite of a Legendre transform is fulfilled, the Hamiltonian is found. The Lyapunov function is obtained as a residual energy function (REF). The REF consists of the sum of Hamiltonian and losses or dissipative energies (which are negative), and can be used for stability by Lyapunov’s second method. Stability conditions are mathematically proven.
[1]Ao P, 2004. Potential in stochastic differential equations: novel construction. J Phys A, 37(3):L25-L30.
[2]Arnold VI, 1989. Mathematical methods of classical mechanics (2nd). Graduate Texts in Mathematics. Springer-Verlag, New York, USA.
[3]Barbashin EA, Krasovsky NN, 1952. On the stability of motion as a whole. Doklady Akademii Nauk SSSR, 86(3):453-546 (in Russian).
[4]Chen J, Guo YX, Mei FX, 2018. New methods to find solutions and analyze stability of equilibrium of nonholonomic mechanical systems. Acta Mech Sin, 34(6):1136- 1144.
[5]Chen LQ, Zu JW, Wu J, 2004. Principal resonance in transverse nonlinear parametric vibration of an axially accelerating viscoelastic string. Acta Mech Sin, 20(3):307-316.
[6]Civelek C, 2018. Stability analysis of engineering/physical dynamic systems using residual energy function. Arch Contr Sci, 28(2):201-222.
[7]Civelek C, Diemar U, 2003. Stability Analysis Using Energy Functions. Internationales Wissenschaftliches Koloquium, Technische Universität Ilmenau, Ilmenau (in German).
[8]Hahn W, 1967. Stability of Motion. Springer-Verlag, Berlin, Heidelberg, Germany.
[9]Heil M, Kitzka F, 1984. Grundkurs Theoretische Mechanik. Springer, Wiesbaden GmbH, Wiesbaden, Germany (in German).
[10]Huang ZL, Zhu WQ, 2000. Lyapunov exponent and almost sure asymptotic stability of quasi-linear gyroscopic systems. Int J Nonl Mech, 35(4):645-655.
[11]Krasovskii NN, 1959. Problems of the Theory of Stability of Motion. Stanford University Press, California, USA.
[12]Kwon C, Ao P, Thouless DJ, 2005. Structure of stochastic dynamics near fixed points. PNAS, 102(37):13029-13033.
[13]Lasalle JP, 1960. Some extensions of Liapunov’s second method. IRE Trans Circ Theory, 7(4):520-527.
[14]Lyapunov AM, 1992. The general problem of the stability of motion. Int J Contr, 55(3):531-534.
[15]Ma YA, Tan QJ, Yuan RS, et al., 2014. Potential function in a continuous dissipative chaotic system: decomposition scheme and role of strange attractor. Int J Bifurc Chaos, 24(2):1450015.
[16]Marino R, Nicosia S, 1983. Hamiltonian-type Lyapunov functions. IEEE Trans Autom Contr, 28(11):1055-1057.
[17]Maschke BMJ, Ortega R, van der Schaft AJ, 2000. Energy- based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Contr, 45(8): 1498-1502.
[18]McLachlan RI, Quispel GRW, Robidoux N, 1998. Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first ıntegrals. Phys Rev Lett, 81(12):2399-2403.
[19]Rouche N, Habets P, Laloy M, 1977. Stability Theory by Liapunov’s Direct Method. Springer-Verlag, New York, USA.
[20]Susse R, Civelek C, 2003. Analysis of engineering systems by means of Lagrange and Hamilton formalisms depending on contravariant, covariant tensorial variables. Forsch Ingen, 68(1):66-74.
[21]Süsse R, Civelek C, 2013. Analysis of coupled dissipative dynamic systems of engineering using extended Hamiltonian H for classical and nonconservative Hamiltonian H*n for higher order Lagrangian systems. Forsch Ingen, 77(1-2):1-11.
[22]Xu W, Yuan B, Ao P, 2011. Construction of Lyapunov function for dissipative gyroscopic system. Chin Phys Lett, 28(5):050201.
[23]Yin L, Ao P, 2006. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance. J Phys A, 39(27):8593-8601.
[24]Ying ZG, Zhu WQ, 2000. Exact stationary solutions of stochastically excited and dissipated gyroscopic systems. Int J Nonl Mech, 35(5):837-848.
[25]Yoshizawa T, 1966. Stability Theory by Liapunov’s Second Method. Mathematical Society of Japan, Tokio, Japan.
[26]Yuan RS, Wang XN, Ma YA, et al., 2013. Exploring a noisy van der Pol type oscillator with a stochastic approach. Phys Rev E, 87(6):062109.
[27]Yuan RS, Ma YA, Yuan B, et al., 2014. Lyapunov function as potential function: a dynamical equivalence. Chin Phys B, 23(1):010505.
Open peer comments: Debate/Discuss/Question/Opinion
<1>