Full Text:   <3062>

Summary:  <1517>

CLC number: TN958.97

On-line Access: 2021-08-17

Received: 2020-04-02

Revision Accepted: 2020-07-19

Crosschecked: 2021-04-01

Cited: 0

Clicked: 4942

Citations:  Bibtex RefMan EndNote GB/T7714


Gang Chen


Jun Wang


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.8 P.1140-1152


Doppler ambiguity analysis and suppression for LTE-based passive bistatic radars

Author(s):  Luo Zuo, Jun Wang, Gang Chen

Affiliation(s):  National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Corresponding email(s):   zuoluo_xidian@163.com, wangjun@xidian.edu.cn

Key Words:  Passive bistatic radar (PBR), Long term evolution (LTE), Doppler ambiguity, Range-Doppler processing

Share this article to: More <<< Previous Article|

Luo Zuo, Jun Wang, Gang Chen. Doppler ambiguity analysis and suppression for LTE-based passive bistatic radars[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(8): 1140-1152.

@article{title="Doppler ambiguity analysis and suppression for LTE-based passive bistatic radars",
author="Luo Zuo, Jun Wang, Gang Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Doppler ambiguity analysis and suppression for LTE-based passive bistatic radars
%A Luo Zuo
%A Jun Wang
%A Gang Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 8
%P 1140-1152
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000143

T1 - Doppler ambiguity analysis and suppression for LTE-based passive bistatic radars
A1 - Luo Zuo
A1 - Jun Wang
A1 - Gang Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 8
SP - 1140
EP - 1152
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000143

In this study, we provide a detailed analysis of the frequency division duplex long term evolution downlink (FDD LTE DL) signal for passive bistatic radars that use the signal as an illuminator of opportunity. In particular, we analyze the cross-ambiguity function and illustrate its undesired deterministic peaks in the Doppler dimension due to the specific structure of the FDD LTE DL signal. A new adaptive mismatched filtering method is proposed for pre-processing the original reference signal to suppress these undesired deterministic peaks in the range-Doppler processing. The effectiveness of our proposed method is demonstrated via simulations following robustness analysis, showing that all undesired peaks are suppressed below −40 dB, with only 1.7 dB reduction in the main peak.


摘要:本文详细介绍了LTE频分物理下行链路信号(LTE信号)作为照射源的外辐射雷达系统。根据LTE信号特定的物理帧结构分析其模糊函数特性,同时探讨多普勒维不同类型副峰的形成机理。提出一种基于自适应参考信号预处理的失配滤波方法求解模糊权值因子,抑制模糊副峰的影响,提高目标检测性能。仿真结果表明所提方法可将副峰抑制至−40 dB以下,同时主峰损失仅为1.7 dB,验证了所提算法有效性。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]3GPP, 2013. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation. 3GPP TS 36.211.

[2]Abdullah RSAR, Salah AA, Ismail A, et al., 2016a. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal. IET Radar Sonar Navig, 10(3):577-585.

[3]Abdullah RSAR, Salah AA, Ismail A, et al., 2016b. Ground moving target detection using LTE-based passive radar. Proc Int Conf on Radar, Antenna, Microwave, Electronics and Telecommunications, p.70-75.

[4]Berger CR, Demissie B, Heckenbach JÖ, et al., 2010. Signal processing for passive radar using OFDM waveforms. IEEE J Sel Top Signal Process, 4(1):226-238.

[5]Bongioanni C, Colone F, Langellotti D, et al., 2009. A new approach for DVB-T cross-ambiguity function evaluation. Proc European Radar Conf, p.37-40

[6]Cao W, Hu WD, Zhang LF, et al., 2017. Pilots-aided LTE reference signal reconstruction in low SNR reference channel for passive sensing. Proc IEEE Asia Pacific Microwave Conf, p.97-100.

[7]Chen G, Wang J, Guo S, et al., 2018. Improved mismatched filtering for ATV-based passive bistatic radar. IET Radar Sonar Navig, 12(6):663-670.

[8]Cherniakov M, 2008. Bistatic Radar: Emerging Technology. John Wiley & Sons, New York, USA, p.620-621.

[9]Cherniakov M, Abdullah RSAR, Jancovic P, et al., 2006. Automatic ground target classification using forward scattering radar. IEE Proc Radar Sonar Navig, 153(5):427-437.

[10]Dan YP, Wan XR, Yi JX, et al., 2018. Ambiguity function analysis of long term evolution transmission for passive radar. Proc 12th Int Symp on Antennas, Propagation and EM Theory, p.1-4.

[11]Edrich M, Schroeder A, Meyer F, 2014. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system. IET Radar Sonar Navig, 8(2):114-122.

[12]Evers A, Jackson JA, 2015. Cross-ambiguity characterization of communication waveform features for passive radar. IEEE Trans Aerosp Electron Syst, 51(4):3440-3455.

[13]Kabakchiev C, Behar V, Garvanov I, et al., 2014. Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based forward scattering radar. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.793-797.

[14]Karthik AK, Blum RS, 2018. Improved detection performance for passive radars exploiting known communication signal form. IEEE Signal Process Lett, 25(11):1625-1629.

[15]Labib M, Marojevic V, Reed JH, et al., 2017. Enhancing the robustness of LTE systems: analysis and evolution of the cell selection process. IEEE Commun Mag, 55(2):208-215.

[16]Liang F, Wan XR, Gao F, et al., 2016. Passive detection using orthogonal frequency division multiplex signals of opportunity without multipath clutter cancellation. IET Radar Sonar Navig, 10(3):516-524.

[17]Liu SH, Ma YH, Huang YM, 2019. Sea clutter cancellation for passive radar sensor exploiting multi-channel adaptive filters. IEEE Sens J, 19(3):982-995.

[18]Malanowski M, Kulpa K, Kulpa J, et al., 2014. Analysis of detection range of FM-based passive radar. IET Radar Sonar Navig, 8(2):153-159.

[19]Palmer JE, Harms HA, Searle SJ, et al., 2013. DVB-T passive radar signal processing. IEEE Trans Signal Process, 61(8):2116-2126.

[20]Salah AA, Abdullah RSAR, Ismail A, et al., 2014. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications. Electron Lett, 50(7):545-547.

[21]Searle S, Palmer J, Davis L, et al., 2014. Evaluation of the ambiguity function for passive radar with OFDM transmissions. Proc IEEE Radar Conf, p.1040-1045.

[22]Shamaei K, Khalife J, Kassas ZM, 2018. Exploiting LTE signals for navigation: theory to implementation. IEEE Trans Wirel Commun, 17(4):2173-2189.

[23]Tabassum MN, Hadi MA, Alshebeili S, 2016. CS based processing for high resolution GSM passive bistatic radar. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2229-2233.

[24]Venu D, Rao NVK, 2017. Ambiguity function analysis of broadcast signals for passive radar. Proc 2nd IEEE Int Conf on Recent Trends in Electronics, Information & Communication Technology, p.2026-2029.

[25]Yin L, Li SF, Zhu HB, et al., 2018. Reduced-power almost black subframe based pulse radar spectrum sharing for LTE system. IEEE Trans Electromag Compat, 60(5):1223-1230.

[26]Zaimbashi A, 2016. Multiband FM-based passive bistatic radar: target range resolution improvement. IET Radar Sonar Navig, 10(1):174-185.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE