CLC number: TN78
On-line Access: 2021-10-08
Received: 2020-06-18
Revision Accepted: 2020-11-08
Crosschecked: 2021-02-01
Cited: 0
Clicked: 5856
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0715-9877
Zhiwei Yang, Xu Wu, Deqin Ouyang, Encheng Zhang, Huibin Sun, Shuangchen Ruan. Pulse control of frequency and width for a real-time independently adjustable laser source[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(10): 1379-1389.
@article{title="Pulse control of frequency and width for a real-time independently adjustable laser source",
author="Zhiwei Yang, Xu Wu, Deqin Ouyang, Encheng Zhang, Huibin Sun, Shuangchen Ruan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="10",
pages="1379-1389",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000294"
}
%0 Journal Article
%T Pulse control of frequency and width for a real-time independently adjustable laser source
%A Zhiwei Yang
%A Xu Wu
%A Deqin Ouyang
%A Encheng Zhang
%A Huibin Sun
%A Shuangchen Ruan
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 10
%P 1379-1389
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000294
TY - JOUR
T1 - Pulse control of frequency and width for a real-time independently adjustable laser source
A1 - Zhiwei Yang
A1 - Xu Wu
A1 - Deqin Ouyang
A1 - Encheng Zhang
A1 - Huibin Sun
A1 - Shuangchen Ruan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 10
SP - 1379
EP - 1389
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000294
Abstract: A set of semiconductor laser pulse seed sources based on an embedded chip is proposed. The greatest feature is that the optical pulse frequency and width can be independently adjusted in real time. The pulse seed sources can be switched independently and online from the gain-switched mode to the quasi-continuous wave mode to obtain optimal optical parameters for specific applications. To explore the physical mechanism of the semiconductor laser source, the rate equation that describes the carrier-photon transient change in a semiconductor laser cavity is numerically derived and solved. Subsequently, problems that need to be considered while designing the drive circuit are identified. The system evaluation indicates that the optical pulse frequency adjustment range is 250 Hz to 42 MHz, and the narrowest optical pulse output width is 80 ps. The pulse seed source can drive semiconductor lasers with different central wavelengths (1064, 1550, and 1970 nm), and can also simultaneously drive two semiconductor lasers and output dual-band optical pulses. It can be used as a seed source for general high-power optical systems, and exhibits good application value and extensive market prospects.
[1]Abellán C, Amaya W, Jofre M, et al., 2014. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt Expr, 22(2):1645-1654.
[2]Blaabjerg F, Teodorescu R, Liserre M, et al., 2006. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron, 53(5):1398-1409.
[3]Dupriez P, Piper A, Malinowski A, et al., 2006. High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm. IEEE Photon Technol Lett, 18(9):1013-1015.
[4]Fang YC, Chaki T, Hung JH, et al., 2016. 1 MW peak-power subpicosecond optical pulse source based on a gain-switched laser diode. Opt Lett, 41(17):4028-4031.
[5]Hatami M, Ghafouri-Shiraz H, Zakery A, 2006. Analysis of a gained nonlinear directional coupler pulse switch. Opt Quant Electron, 38(15):1259-1268.
[6]Heidt AM, Li Z, Sahu J, et al., 2013. 35 kW peak power picosecond pulsed thulium-doped fibre amplifier system seeded by a gain-switched laser diode at 2 μm. Conf on Lasers & Electro-Optics Europe & Int Quantum Electronics Conf, p.1615-1617.
[7]Holub M, Shin J, Saha D, et al., 2007. Electrical spin injection and threshold reduction in a semiconductor laser. Phys Rev Lett, 98(14):146603.
[8]Hong S, Kong B, Lee YS, et al., 2018. Pulse control in a wide frequency range for a quasi-continuous wave diode-pumped cesium atom vapor laser by a pump modulation in the spectral domain. Opt Expr, 26(20):26679-26687.
[9]Hu PC, Chang D, Tan JB, et al., 2019. Displacement measuring grating interferometer: a review. Front Inform Technol Electron Eng, 20(5):631-654.
[10]Ionescu AM, Riel H, 2011. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 479(7373):329-337.
[11]Jirauschek C, Kubis T, 2014. Modeling techniques for quantum cascade lasers. Appl Phys Rev, 1(1):011307.
[12]Kanzelmeyer S, Sayinc H, Theeg T, et al., 2011. All-fiber based amplification of 40 ps pulses from a gain-switched laser diode. Opt Expr, 19(3):1854-1859.
[13]Klein E, Gross N, Rosenbluh M, et al., 2006. Stable isochronal synchronization of mutually coupled chaotic lasers. Phys Rev E, 73(6):066214.
[14]Kulygin M, Denisov G, Shubin S, et al., 2017. Subterahertz nanosecond switches driven by second-long laser pulses. IEEE Trans Terahertz Sci Technol, 7(2):225-227.
[15]Lakshmijayasimha PD, Kaszubowska-Anandarajah A, Martin EP, et al., 2019. Expansion and phase correlation of gain-switched optical frequency combs through FWM in an SOA. Optical Fiber Communication Conf, p.16560-16570.
[16]Li QF, Grojo D, Alloncle AP, et al., 2019. Jetting regimes of double-pulse laser-induced forward transfer. Opt Mater Expr, 9(8):3476-3486.
[17]Lin D, Baktash N, Alam SU, et al., 2018. 106 W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam. Opt Lett, 43(20):4957-4960.
[18]Liu HJ, Gao CX, Tao JT, et al., 2008. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode. Opt Expr, 64(11):7888-7839.
[19]Lu LG, Han XB, Li JQ, et al., 2013. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources, 226:272-288.
[20]Murakami A, Kawashima K, Atsuki K, 2003. Corrections to “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection”. IEEE J Quant Electron, 39(11):1504.
[21]Nakata K, Tomita A, Fujiwara M, et al., 2017. Intensity fluctuation of a gain-switched semiconductor laser for quantum key distribution systems. Opt Expr, 25(2):622-634.
[22]Pascual MDG, Zhou R, Smyth F, et al., 2015. Software reconfigurable highly flexible gain switched optical frequency comb source. Opt Expr, 23(18):23225-23235.
[23]Singh B, Al-haddad K, Chandra A, 1999. A review of active filters for power quality improvement. IEEE Trans Ind Electron, 46(5):960-971.
[24]Wada K, Matsukura S, Tanaka A, et al., 2015. Precise measurement of single-mode fiber lengths using a gain-switched distributed feedback laser with delayed optical feedback. Opt Expr, 23(18):23013-23020.
[25]Wieczorek S, Krauskopf B, Simpson TB, et al., 2005. The dynamical complexity of optically injected semiconductor lasers. Phys Rep, 416(1-2):1-128.
[26]Xiao H, Li SM, Han X, et al., 2017. Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater Des, 122:330-339.
[27]Xie HB, Li Y, Jiang C, et al., 2019. Optically injected intensity-stable pulse source for secure quantum key distribution. Opt Expr, 27(9):12231-12240.
[28]Yu YM, Kang K, 2020. Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review. Front Inform Technol Electron Eng, 21(1):97-115.
[29]Zang YJ, Chen YH, Yang CJ, et al., 2020. A new approach for analyzing the effect of non-ideal power supply on a constant current underwater cabled system. Front Inform Technol Electron Eng, 21(4):604-614.
Open peer comments: Debate/Discuss/Question/Opinion
<1>