Full Text:   <2052>

Summary:  <127>

CLC number: O436

On-line Access: 2022-02-28

Received: 2020-07-10

Revision Accepted: 2022-04-22

Crosschecked: 2020-09-04

Cited: 0

Clicked: 3288

Citations:  Bibtex RefMan EndNote GB/T7714


Hui-zhu Hu




-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.2 P.171-185


A review of optically induced rotation

Author(s):  Qi ZHU, Nan LI, Heming SU, Wenqiang LI, Huizhu HU

Affiliation(s):  State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   huhuizhu2000@zju.edu.cn

Key Words:  Optical tweezer, Optically induced rotation, Angular momentum, Micro-rotor

Share this article to: More |Next Article >>>

Qi ZHU, Nan LI, Heming SU, Wenqiang LI, Huizhu HU. A review of optically induced rotation[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 171-185.

@article{title="A review of optically induced rotation",
author="Qi ZHU, Nan LI, Heming SU, Wenqiang LI, Huizhu HU",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A review of optically induced rotation
%A Nan LI
%A Heming SU
%A Wenqiang LI
%A Huizhu HU
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 171-185
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000338

T1 - A review of optically induced rotation
A1 - Qi ZHU
A1 - Nan LI
A1 - Heming SU
A1 - Wenqiang LI
A1 - Huizhu HU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 171
EP - 185
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000338

The optical rotation technique arose in the 1990s. optical tweezer brought an ideal platform for research on the angular momentum of laser beams. For decades, the optical rotation technique has been widely applied in laboratory optical manipulation and the fields of biology and optofluidics. Recently, it has attracted much attention for its potential in the classical and quantum regimes. In this work, we review the progress of experiments and applications of optically induced rotation. First, we introduce the basic exploration of angular momentum. Then, we cover the development and application of optical rotation induced by orbital angular momentum, and the spin angular momentum is presented. Finally, we elaborate on recent applications of the optical rotation technique in high vacuum. As precise optical manipulation in a liquid medium enters its maturity, optical tweezers in high vacuum open a new path for the high-speed micro-rotor.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abramochkin E, Volostnikov V, 1991. Beam transformations and nontransformed beams. Opt Commun, 83(1-2):123-135. doi: 10.1016/0030-4018(91)90534-K

[2]Ahn J, Xu ZJ, Bang J, et al., 2018. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys Rev Lett, 121(3):033603. doi: 10.1103/PhysRevLett.121.033603

[3]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45(11):8185-8189. doi: 10.1103/PhysRevA.45.8185

[4]Arita Y, Mazilu M, Dholakia K, 2013. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat Commun, 4:2374. doi: 10.1038/ncomms3374

[5]Arita Y, Richards JM, Mazilu M, et al., 2016. Rotational dynamics and heating of trapped nanovaterite particles. ACS Nano, 10(12):11505-11510. doi: 10.1021/acsnano.6b07290

[6]Arzola AV, Jákl P, Chvátal L, et al., 2014. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. Opt Expr, 22(13):16207-16221. doi: 10.1364/OE.22.016207

[7]Asavei T, Nieminen TA, Heckenberg NR, et al., 2010. Use of shape induced birefringence for rotation in optical tweezers. Optical Trapping and Optical Micromanipulation VII, p.77621C. doi: 10.1117/12.861793

[8]Ashkin A, 1970. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 24(4):156-159. doi: 10.1103/PhysRevLett.24.156

[9]Ashkin A, 1992. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J, 61(2):569-582. doi: 10.1016/S0006-3495(92)81860-X

[10]Ashkin A, Dziedzic JM, 1977. Feedback stabilization of optically levitated particles. Appl Phys Lett, 30(4):202-204. doi: 10.1063/1.89335

[11]Bayoudh S, Nieminen TA, Heckenberg NR, et al., 2003. Orientation of biological cells using plane-polarized Gaussian beam optical tweezers. J Mod Opt, 50(10):1581-1590. doi: 10.1080/09500340308235232

[12]Bennett JS, Gibson LJ, Kelly RM, et al., 2013. Spatially-resolved rotational microrheology with an optically-trapped sphere. Sci Rep, 3:1759. doi: 10.1038/srep01759

[13]Beth RA, 1936. Mechanical detection and measurement of the angular momentum of light. Phys Rev, 50(2):115-125. doi: 10.1103/PhysRev.50.115

[14]Bishop AI, Nieminen TA, Heckenberg NR, et al., 2003. Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys Rev A, 68(3):033802. doi: 10.1103/PhysRevA.68.033802

[15]Bishop AI, Nieminen TA, Heckenberg NR, et al., 2004. Optical microrheology using rotating laser-trapped particles. Phys Rev Lett, 92(19):198104. doi: 10.1103/PhysRevLett.92.198104

[16]Bonin KD, Kourmanov B, Walker TG, 2002. Light torque nanocontrol, nanomotors and nanorockers. Opt Expr, 10(19):984-989. doi: 10.1364/OE.10.000984

[17]Cao B, Kelbauskas L, Chan S, et al., 2017. Rotation of single live mammalian cells using dynamic holographic optical tweezers. Opt Lasers Eng, 92:70-75. doi: 10.1016/j.optlaseng.2016.12.019

[18]Chan J, Alegre TPM, Safavi-Naeini AH, et al., 2011. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367):89-92. doi: 10.1038/nature10461

[19]Chang S, Lee SS, 1985. Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental-mode laser beam. J Opt Soc Am B, 2(11):1853-1860. doi: 10.1364/JOSAB.2.001853

[20]Chen MS, Huang SJ, Shao W, et al., 2018. Optical force and torque on a dielectric Rayleigh particle by a circular Airy vortex beam. J Quant Spectrosc Radiat Trans, 208:101-107. doi: 10.1016/j.jqsrt.2018.01.018

[21]Chen XT, Cheng WZ, Xie MY, et al., 2019. Optical rotational self-assembly at air-water surface by a single vortex beam. Result Phys, 12:1172-1176. doi: 10.1016/j.rinp.2018.11.070

[22]Dasgupta R, Mohanty SK, Gupta PK, 2003. Controlled rotation of biological microscopic objects using optical line tweezers. Biotechnol Lett, 25(19):1625-1628. doi: 10.1023/A:1025678320136

[23]Deufel C, Forth S, Simmons CR, et al., 2007. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods, 4(3):223-225. doi: 10.1038/nmeth1013

[24]Dharmadhikari JA, Roy S, Dharmadhikari AK, et al., 2004. Torque-generating malaria-infected red blood cells in an optical trap. Opt Expr, 12(6):1179-1184. doi: 10.1364/OPEX.12.001179

[25]Diniz K, Dutra RS, Pires LB, et al., 2019. Negative optical torque on a microsphere in optical tweezers. Opt Expr, 27(5):5905-5917. doi: 10.1364/OE.27.005905

[26]Donato MG, Hernandez J, Mazzulla A, et al., 2014. Polarization-dependent optomechanics mediated by chiral microresonators. Nat Commun, 5:3656. doi: 10.1038/ncomms4656

[27]Friese MEJ, Enger J, Rubinsztein-Dunlop H, et al., 1996. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A, 54(2):1593-1596. doi: 10.1103/PhysRevA.54.1593

[28]Friese MEJ, Nieminen TA, Heckenberg NR, et al., 1998a. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394(6691):348-350. doi: 10.1038/28566

[29]Friese MEJ, Nieminen TA, Heckenberg NR, et al., 1998b. Optical torque controlled by elliptical polarization. Opt Lett, 23(1):1-3. doi: 10.1364/OL.23.000001

[30]Friese MEJ, Rubinsztein-Dunlop H, Gold J, et al., 2001. Optically driven micromachine elements. Appl Phys Lett, 78(4):547-549. doi: 10.1063/1.1339995

[31]Galajda P, Ormos P, 2001. Complex micromachines produced and driven by light. Appl Phys Lett, 78(2):249-251. doi: 10.1063/1.1339258

[32]Galajda P, Ormos P, 2002a. Rotation of microscopic propellers in laser tweezers. J Opt B, 4(2):S78-S81. doi: 10.1088/1464-4266/4/2/372

[33]Galajda P, Ormos P, 2002b. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl Phys Lett, 80(24):4653-4655. doi: 10.1063/1.1480885

[34]Garcés-Chávez V, McGloin D, Melville H, et al., 2002a. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419(6903):145-147. doi: 10.1038/nature01007

[35]Garcés-Chávez V, Volke-Sepulveda K, Chávez-Cerda S, et al., 2002b. Transfer of orbital angular momentum to an optically trapped low-index particle. Phys Rev A, 66(6):063402. doi: 10.1103/PhysRevA.66.063402

[36]Garcés-Chávez V, McGloin D, Padgett MJ, et al., 2003. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys Rev Lett, 91(9):093602. doi: 10.1103/PhysRevLett.91.093602

[37]He H, Friese MEJ, Heckenberg NR, et al., 1995. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett, 75(5):826-829. doi: 10.1103/PhysRevLett.75.826

[38]Hernández RJ, Mazzulla A, Provenzano C, et al., 2015. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci Rep, 5:16926. doi: 10.1038/srep16926

[39]Higurashi E, Sawada R, Ito T, 1998. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys Rev E, 59(3):3676-3681. doi: 10.1103/PhysRevE.59.3676

[40]Hoang TM, Ma Y, Ahn J, et al., 2016. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys Rev Lett, 117(12):123604. doi: 10.1103/PhysRevLett.117.123604

[41]Hörner F, Woerdemann M, Müller S, et al., 2010. Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton, 3(7):468-475. doi: 10.1002/jbio.201000033

[42]Ivanov M, Hanstorp D, 2018. Controlled spin of a nonbirefringent droplet trapped in an optical vortex beam. Opt Commun, 427:152-157. doi: 10.1016/j.optcom.2018.06.021

[43]Jones PH, Palmisano F, Bonaccorso F, et al., 2009. Rotation detection in light-driven nanorotors. ACS Nano, 3(10):3077-3084. doi: 10.1021/nn900818n

[44]Kreysing MK, Kiessling T, Fritsch A, et al., 2008. The optical cell rotator. Opt Expr, 16(21):16984-16992. doi: 10.1364/OE.16.016984

[45]Kuhn S, Asenbaum P, Kosloff A, et al., 2015. Cavity-assisted manipulation of freely rotating silicon nanorods in high vacuum. Nano Lett, 15(8):5604-5608. doi: 10.1021/acs.nanolett.5b02302

[46]Kuhn S, Kosloff A, Stickler BA, et al., 2017a. Full rotational control of levitated silicon nanorods. https://arxiv.org/abs/1608.07315

[47]Kuhn S, Stickler BA, Kosloff A, et al., 2017b. Optically driven ultra-stable nanomechanical rotor. Nat Commun, 8(1):1670. doi: 10.1038/s41467-017-01902-9

[48]La Porta A, Wang MD, 2004. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett, 92(19):190801. doi: 10.1103/PhysRevLett.92.190801

[49]Leach J, Mushfique H, di Leonardo R, et al., 2006. An optically driven pump for microfluidics. Lab Chip, 6(6):735-739. doi: 10.1039/B601886F

[50]Lechner W, Habraken SJ, Kiesel N, et al., 2013. Cavity optomechanics of levitated nanodumbbells: nonequilibrium phases and self-assembly. Phys Rev Lett, 110(14):143604.

[51]Li RX, Yang RP, Ding CY, et al., 2017a. Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam. J Quant Spectrosc Radiat Trans, 191:96-115. doi: 10.1016/j.jqsrt.2017.02.003

[52]Li RX, Ding CY, Mitri FG, 2017b. Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size. J Quant Spectrosc Radiat Trans, 196:53-68. doi: 10.1016/j.jqsrt.2017.03.035

[53]Li TC, Kheifets S, Raizen MG, 2011. Millikelvin cooling of an optically trapped microsphere in vacuum. Nat Phys, 7(7):527-530. doi: 10.1038/nphys1952

[54]Li WQ, Li N, Shen Y, et al., 2018. Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. Appl Opt, 57(4):823-828. doi: 10.1364/AO.57.000823

[55]Liang YL, Huang YP, Lu YS, et al., 2010. Cell rotation using optoelectronic tweezers. Biomicrofluidics, 4(4):43003. doi: 10.1063/1.3496357

[56]Liaw JW, Lo WJ, Lin WC, et al., 2015. Theoretical study of optical torques for aligning Ag nanorods and nanowires. J Quant Spectrosc Radiat Trans, 162:133-142. doi: 10.1016/j.jqsrt.2015.03.030

[57]Liaw JW, Chen YS, Kuo KM, 2016. Spinning gold nanoparticles driven by circularly polarized light. J Quant Spectrosc Radiat Trans, 175:46-53. doi: 10.1016/j.jqsrt.2016.01.012

[58]Lin CL, Wang I, Dollet B, et al., 2006. Velocimetry microsensors driven by linearly polarized optical tweezers. Opt Lett, 31(3):329-331. doi: 10.1364/OL.31.000329

[59]MacDonald MP, Paterson L, Volke-Sepulveda K, et al., 2002a. Creation and manipulation of three-dimensional optically trapped structures. Science, 296(5570):1101-1103. doi: 10.1126/science.1069571

[60]MacDonald MP, Volke-Sepulveda K, Paterson L, et al., 2002b. Revolving interference patterns for the rotation of optically trapped particles. Opt Commun, 201(1-3):21-28. doi: 10.1016/S0030-4018(01)01652-2

[61]Manjavacas A, García de Abajo FJ, 2010. Vacuum friction in rotating particles. Phys Rev Lett, 105(11):113601. doi: 10.1103/PhysRevLett.105.113601

[62]Mason TG, Weitz DA, 1995. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett, 74(7):1250-1253. doi: 10.1103/PhysRevLett.74.1250

[63]Mitri FG, 2016a. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam. J Quant Spectrosc Radiat Trans, 182:172-179. doi: 10.1016/j.jqsrt.2016.05.033

[64]Mitri FG, 2016b. Spin reversal and orbital torques on a viscous fluid Rayleigh sphere located arbitrarily in acoustical Bessel vortex (spiraling) beams. Ultrasonics, 72:57-65. doi: 10.1016/j.ultras.2016.07.007

[65]Mohanty SK, Uppal A, Gupta PK, 2004. Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis. Biotechnol Lett, 26(12):971-974. doi: 10.1023/B:BILE.0000030041.94322.71

[66]Monteiro F, Ghosh S, van Assendelft EC, et al., 2018. Optical rotation of levitated spheres in high vacuum. Phys Rev A, 97(5):051802. doi: 10.1103/PhysRevA.97.051802

[67]Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, 2001a. Calculation and optical measurement of laser trapping forces on non-spherical particles. J Quant Spectrosc Radiat Trans, 70(4-6):627-637. doi: 10.1016/S0022-4073(01)00034-6

[68]Nieminen TA, Rubinsztein-Dunlop H, Heckenberg NR, et al., 2001b. Numerical modelling of optical trapping. Comput Phys Commun, 142(1-3):468-471. doi: 10.1016/S0010-4655(01)00391-5

[69]Nieminen TA, Heckenberg NR, Rubinsztein-dunlop H, 2001c. Optical measurement of microscopic torques. J Mod Opt, 48(3):405-413. doi: 10.1080/09500340108230922

[70]Nieminen TA, Bishop AI, Heckenberg NR, et al., 2003. Polarimetric measurement of optical torque. Proc 7th Conf on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, p.267-270.

[71]Nieminen TA, Parkin SJW, Heckenberg NR, et al., 2004a. Optical torque and symmetry. Optical Trapping and Optical Micromanipulation, p.254-263. doi: 10.1117/12.557070

[72]Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H, 2004b. Computational modeling of optical tweezers. Optical Trapping and Optical Micromanipulation, p.514-523. doi: 10.1117/12.557090

[73]Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H, 2008. Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt Lett, 33(2):122-124. doi: 10.1364/OL.33.000122

[74]O'Neil AT, Padgett MJ, 2002. Rotational control within optical tweezers by use of a rotating aperture. Opt Lett, 27(9):743-745. doi: 10.1364/OL.27.000743

[75]O'Neil AT, MacVicar I, Allen L, et al., 2002. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett, 88(5):053601. doi: 10.1103/PhysRevLett.88.053601

[76]Oroszi L, Galajda P, Kirei H, et al., 2006. Direct measurement of torque in an optical trap and its application to double-strand DNA. Phys Rev Lett, 97(5):058301. doi: 10.1103/PhysRevLett.97.058301

[77]Parkin SJ, Knöner G, Nieminen TA, et al., 2007. Picoliter viscometry using optically rotated particles. Phys Rev E, 76(4):041507. doi: 10.1103/PhysRevE.76.041507

[78]Paterson L, MacDonald MP, Arlt J, et al., 2001. Controlled rotation of optically trapped microscopic particles. Science, 292(5518):912-914. doi: 10.1126/science.1058591

[79]Prentice PA, MacDonald MP, Frank TG, et al., 2004. Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays. Opt Expr, 12(4):593-600. doi: 10.1364/OPEX.12.000593

[80]Raghu A, Yogesha, Ananthamurthy S, 2010. Optical tweezer for micro and nano scale rheology of biomaterials. Indian J Phys, 84(8):1051-1061. doi: 10.1007/s12648-010-0099-7

[81]Ran LL, Guo ZY, Qu SL, 2012. Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser. Chin Phys B, 21(10):104206. doi: 10.1088/1674-1056/21/10/104206

[82]Reimann R, Doderer M, Hebestreit E, et al., 2018. GHz rotation of an optically trapped nanoparticle in vacuum. Phys Rev Lett, 121(3):033602. doi: 10.1103/PhysRevLett.121.033602

[83]Rodríguez-Sevilla P, Arita Y, Liu XG, et al., 2018. The temperature of an optically trapped, rotating microparticle. ACS Photon, 5(9):3772-3778. doi: 10.1021/acsphotonics.8b00822

[84]Rowe AD, Leake MC, Morgan H, et al., 2003. Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. J Mod Opt, 50(10):1539-1554. doi: 10.1080/09500340308235228

[85]Roy B, Bera SK, Banerjee A, 2014. Simultaneous detection of rotational and translational motion in optical tweezers by measurement of backscattered intensity. Opt Lett, 39(11):3316-3319. doi: 10.1364/OL.39.003316

[86]Rubinsztein-Dunlop H, Nieminen TA, Friese MEJ, et al., 1998. Optical trapping of absorbing particles. Adv Quant Chem, 30:469-492. doi: 10.1016/S0065-3276(08)60523-7

[87]Santamato E, Daino B, Romagnoli M, et al., 1986. Collective rotation of molecules driven by the angular momentum of light in a nematic film. Phys Rev Lett, 57(19):2423-2426. doi: 10.1103/PhysRevLett.57.2423

[88]Santamato E, Sasso A, Piccirillo B, et al., 2002. Optical angular momentum transfer to transparent isotropic particles using laser beam carrying zero average angular momentum. Opt Expr, 10(17):871-878. doi: 10.1364/OE.10.000871

[89]Sato S, Inaba H, 1996. Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Opt Quant Electron, 28(1):1-16. doi: 10.1007/BF00578546

[90]Sato S, Ishigure M, Inaba H, 1991. Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams. Electron Lett, 27(20):1831-1832. doi: 10.1049/el:19911138

[91]Sheu FW, Lan TK, Lin YC, et al., 2010. Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers. Opt Expr, 18(14):14724-14729. doi: 10.1364/OE.18.014724

[92]Simpson NB, Dholakia K, Allen L, et al., 1997. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett, 22(1):52-54. doi: 10.1364/OL.22.000052

[93]Singer W, Nieminen TA, Gibson UJ, et al., 2006. Orientation of optically trapped nonspherical birefringent particles. Phys Rev E, 73(2):021911. doi: 10.1103/PhysRevE.73.021911

[94]Sriram I, Meyer A, Furst EM, 2010. Active microrheology of a colloidal suspension in the direct collision limit. Phys Fluids, 22(6):062003. doi: 10.1063/1.3450319

[95]Starr C, Dultz W, Wagner HP, et al., 2005. Optically controlled rotation of PTCDA crystals in optical tweezers. 27th Int Conf on Physics of Semiconductor, p.1099-1100. doi: 10.1063/1.1994496

[96]Stickler BA, Nimmrichter S, Martinetz L, et al., 2016. Rotranslational cavity cooling of dielectric rods and disks. Phys Rev A, 94(3):033818. doi: 10.1103/PhysRevA.94.033818

[97]Tamm C, Weiss CO, 1990. Bistability and optical switching of spatial patterns in a laser. J Opt Soc Am B, 7(6):1034-1038. doi: 10.1364/JOSAB.7.001034

[98]Tanaka Y, 2018. Double-arm optical tweezer system for precise and dexterous handling of micro-objects in 3D workspace. Opt Lasers Eng, 111:65-70. doi: 10.1016/j.optlaseng.2018.07.019

[99]Tkachenko G, Brasselet E, 2014. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat Commun, 5:4491. doi: 10.1038/ncomms5491

[100]Ukita H, Kawashima H, 2010. Optical rotor capable of controlling clockwise and counterclockwise rotation in optical tweezers by displacing the trapping position. Appl Opt, 49(10):1991-1996. doi: 10.1364/AO.49.001991

[101]Vaippully R, Bhatt D, dev Ranjan A, et al., 2019. Study of adhesivity of surfaces using rotational optical tweezers. Phys Scr, 94(10):105008. doi: 10.1088/1402-4896/ab292d

[102]Vaipully R, Bhatt D, dev Ranjan A, et al., 2019. Determination of surface binding properties using rotational optical tweezers. Optics in the Life Sciences Congress, Article AW1E.2. doi: 10.1364/OMA.2019.AW1E.2

[103]Wu T, Nieminen TA, Mohanty S, et al., 2012a. Directing growth cones of optic axons growing with laser scissors and laser tweezers. Optical Trapping and Optical Micromanipulation IX, p.84580P. doi: 10.1117/12.930411

[104]Wu T, Nieminen TA, Mohanty S, et al., 2012b. A photon-driven micromotor can direct nerve fibre growth. Nat Photon, 6(1):62-67. doi: 10.1038/nphoton.2011.287

[105]Xie MY, Chen SX, Mills JK, et al., 2016. Cell out-of-plane rotation control using a cell surgery robotic system equipped with optical tweezers manipulators. Proc IEEE Int Conf on Information and Automation, p.103-108. doi: 10.1109/ICInfA.2016.7831804

[106]Yogesha, Bhattacharya S, Ananthamurthy S, 2012. Characterizing the rotation of non symmetric objects in an optical tweezer. Opt Commun, 285(10-11):2530-2535. doi: 10.1016/j.optcom.2012.01.055

[107]Yu HC, She WL, 2014. Rotation dynamics of a uniaxial birefringent cylinder in an optical tweezer with a rotating polarization ellipse. J Opt Soc Am B, 31(11):2864-2870. doi: 10.1364/JOSAB.31.002864

[108]Zhong MC, Zhou JH, Ren YX, et al., 2009. Rotation of birefringent particles in optical tweezers with spherical aberration. Appl Opt, 48(22):4397-4402. doi: 10.1364/AO.48.004397

[109]Zhong MC, Zhou JH, Ren YX, et al., 2009. Rotation of birefringent particles in optical tweezers with spherical aberration. Appl Opt, 48(22):4397-4402. doi: 10.1364/AO.48.004397

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE