Full Text:   <5047>

Summary:  <328>

CLC number: TN98

On-line Access: 2023-01-21

Received: 2021-08-22

Revision Accepted: 2023-01-21

Crosschecked: 2021-11-01

Cited: 0

Clicked: 3189

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Dongzhou ZHAN

https://orcid.org/0000-0002-3119-2178

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.1 P.164-175

http://doi.org/10.1631/FITEE.2100398


Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA


Author(s):  Dongzhou ZHAN, Sitian WANG, Shougui CAI, Huarong ZHENG, Wen XU

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   wxu@zju.edu.cn

Key Words:  Underwater acoustic sensor network, Acoustic localization, Sound speed profile, Time difference of arrival (TDOA), Frequency difference of arrival (FDOA)


Dongzhou ZHAN, Sitian WANG, Shougui CAI, Huarong ZHENG, Wen XU. Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(1): 164-175.

@article{title="Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA",
author="Dongzhou ZHAN, Sitian WANG, Shougui CAI, Huarong ZHENG, Wen XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="1",
pages="164-175",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100398"
}

%0 Journal Article
%T Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA
%A Dongzhou ZHAN
%A Sitian WANG
%A Shougui CAI
%A Huarong ZHENG
%A Wen XU
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 1
%P 164-175
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100398

TY - JOUR
T1 - Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA
A1 - Dongzhou ZHAN
A1 - Sitian WANG
A1 - Shougui CAI
A1 - Huarong ZHENG
A1 - Wen XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 1
SP - 164
EP - 175
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100398


Abstract: 
In the underwater medium, the speed of sound varies with water depth, temperature, and salinity. The inhomogeneity of water leads to bending of sound rays, making the existing localization algorithms based on straight-line propagation less precise. To realize high-precision node positioning in underwater acoustic sensor networks (UASNs), a multi-layer isogradient sound speed profile (SSP) model is developed using the linear segmentation approximation approach. Then, the sound ray tracking problem is converted into a polynomial root-searching problem. Based on the derived gradient of the signal's Doppler shift at the sensor node, a novel underwater node localization algorithm is proposed using both the time difference of arrival (TDOA) and frequency difference of arrival (FDOA). Simulations are implemented to illustrate the effectiveness of the proposed algorithm. Compared with the traditional straight-line propagation method, the proposed algorithm can effectively handle the sound ray bending phenomenon. Estimation accuracy with different SSP modeling errors is also investigated. Overall, accurate and reliable node localization can be achieved.

基于到达时间差和到达频率差的多层等梯度声速剖面建模与声学定位

詹东洲1,王思甜1,蔡守桂1,郑华荣2,徐文2
1浙江大学信息与电子工程学院,浙江省杭州市,310027
2浙江大学海洋学院浙江省海洋观测-成像试验区重点实验室,浙江省舟山市,316021
摘要:在水下媒介中,声速随着水深、温度和盐度而变化。水体的不均匀性导致声线弯折,使得现有基于声信号直线传播假设的定位算法不够精确。为实现水下声学传感网络中的高精度节点定位,本文首先使用线性分割近似方法,提出多层等梯度声速剖面(sound speed profile,SSP)模型。基于此模型,可将声线跟踪问题转化为多项式寻根问题。利用传感器节点处信号多普勒频移的导数,提出一种新的使用到达时间差(time difference of arrival,TDOA)和到达频率差(frequency difference of arrival,FDOA)的水下节点定位算法。通过模拟仿真,可以证明所提算法的有效性。与传统基于直线传播假设的方法相比,所提算法可有效处理声线弯折现象。此外,研究了不同SSP建模误差下的估计精度。总体而言,新提出的方法可以实现准确可靠的节点定位。

关键词:水下声学传感器网络;声学定位;声速剖面;到达时间差(TDOA);到达频率差(FDOA)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ameer PM, Jacob L, 2010. Localization using ray tracing for underwater acoustic sensor networks. IEEE Commun Lett, 14(10):930-932.

[2]Beaudeau JP, Bugallo MF, Djurić PM, 2015. RSSI-based multi-target tracking by cooperative agents using fusion of cross-target information. IEEE Trans Signal Processing, 63(19):5033-5044.

[3]Bogushevich AY, 1999. To an analysis of the acoustic Doppler effect in a three-dimensional inhomogeneous moving medium. Atmos Ocean Opt, 12(4):301-308.

[4]Cai SJ, 2019. Research on Positioning Error Correction in Underwater Acoustic Sensor Network with Sound Speed Inversion. MS Thesis, Zhejiang University, Hangzhou, China (in Chinese).

[5]Chen HY, Liu MQ, Zhang SL, 2018. Energy-efficient localization and target tracking via underwater mobile sensor networks. Front Inform Technol Electron Eng, 19(8):999-1012.

[6]Cheng XZ, Shu HN, Liang QL, et al., 2008. Silent positioning in underwater acoustic sensor networks. IEEE Trans Veh Technol, 57(3):1756-1766.

[7]Doǧançay K, Hashemi-Sakhtsari A, 2005. Target tracking by time difference of arrival using recursive smoothing. Signal Processing, 85(4):667-679.

[8]Erol-Kantarci M, Mouftah HT, Oktug S, 2011. A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun Surv Tutor, 13(3):487-502.

[9]Fan GY, Chen HF, Xie L, et al., 2011. Funneling media access control (MAC) protocol for underwater acoustic sensor networks. J Zhejiang Univ Sci C (Comput & Electron), 12(11):932-941.

[10]Ferguson BG, Lo KW, Thuraisingham RA, 2005. Sensor position estimation and source ranging in a shallow water environment. IEEE J Ocean Eng, 30(2):327-337.

[11]Han GJ, Jiang JF, Shu L, et al., 2012. Localization algorithms of underwater wireless sensor networks: a survey. Sensors, 12(2):2026-2061.

[12]Ho KC, Xu WW, 2004. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans Signal Processing, 52(9):2453-2463.

[13]Ho KC, Lu XN, Kovavisaruch L, 2007. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans Signal Processing, 55(2):684-696.

[14]Huang H, Zheng YR, 2018. Node localization with AoA assistance in multi-hop underwater sensor networks. Ad Hoc Netw, 78:32-41.

[15]Jia TY, Ho KC, Wang HY, et al., 2019. Effect of sensor motion on time delay and Doppler shift localization: analysis and solution. IEEE Trans Signal Processing, 67(22):5881-5895.

[16]Jiang F, Zhang ZK, Najafabadi HE, et al., 2020. Underwater TDOA/FDOA joint localisation method based on cross-ambiguity function. IET Radar Sonar Navig, 14(8):1256-1266.

[17]Kong JJ, Cui JH, Wu DP, et al., 2005. Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications. Processing IEEE Military Communications Conf, p.1535-1541.

[18]Li B, Xu YX, Fan SS, et al., 2018. Underwater docking of an under-actuated autonomous underwater vehicle: system design and control implementation. Front Inform Technol Electron Eng, 19(8):1024-1041.

[19]Liang QL, Zhang BJ, Zhao CL, et al., 2013. TDoA for passive localization: underwater versus terrestrial environment. IEEE Trans Parall Distrib Syst, 24(10):2100-2108.

[20]Luo JL, Han Y, Fan LY, 2018. Underwater acoustic target tracking: a review. Sensors, 18(1):112.

[21]Pompili D, Akyildiz IF, 2009. Overview of networking protocols for underwater wireless communications. IEEE Commun Mag, 47(1):97-102.

[22]Ramezani H, Jamali-Rad H, Leus G, 2013. Target localization and tracking for an isogradient sound speed profile. IEEE Trans Signal Processing, 61(6):1434-1446.

[23]Shirley JW, 1951. An early experimental determination of Snell's law. Am J Phys, 19(9):507-508.

[24]Sun YL, Yuan YZ, Xu QM, et al., 2019. A mobile anchor node assisted RSSI localization scheme in underwater wireless sensor networks. Sensors, 19(20):4369.

[25]Tan HP, Diamant R, Seah WKG, 2011. A survey of techniques and challenges in underwater localization. Ocean Eng, 38(14-15):1663-1676.

[26]Vankayalapati N, Kay S, Ding Q, 2014. TDOA based direct positioning maximum likelihood estimator and the Cramer-Rao bound. IEEE Trans Aerosp Electron Syst, 50(3):1616-1635.

[27]Vincent H, Hu SLJ, 1997. Geodetic position estimation of underwater acoustic sensors. J Acoust Soc Am, 102(5):3099-3100.

[28]Zhan DZ, Zhao HF, Xu W, 2014. Non-linear processing based on dolphin inspired real LFM signals for enhanced delay-Doppler resolution. OCEANS, p.1-7.

[29]Zhang BB, Hu YC, Wang HY, et al., 2018. Underwater source localization using TDOA and FDOA measurements with unknown propagation speed and sensor parameter errors. IEEE Access, 6:36645-36661.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE