CLC number: TP393
On-line Access: 2024-06-29
Received: 2023-11-25
Revision Accepted: 2024-09-29
Crosschecked: 2023-12-21
Cited: 0
Clicked: 612
Citations: Bibtex RefMan EndNote GB/T7714
Chi XU, Haibin YU, Xi JIN, Changqing XIA, Dong LI, Peng ZENG. Industrial Internet for intelligent manufacturing: past, present, and future[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(9): 1173-1192.
@article{title="Industrial Internet for intelligent manufacturing: past, present, and future",
author="Chi XU, Haibin YU, Xi JIN, Changqing XIA, Dong LI, Peng ZENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="9",
pages="1173-1192",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300806"
}
%0 Journal Article
%T Industrial Internet for intelligent manufacturing: past, present, and future
%A Chi XU
%A Haibin YU
%A Xi JIN
%A Changqing XIA
%A Dong LI
%A Peng ZENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 9
%P 1173-1192
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300806
TY - JOUR
T1 - Industrial Internet for intelligent manufacturing: past, present, and future
A1 - Chi XU
A1 - Haibin YU
A1 - Xi JIN
A1 - Changqing XIA
A1 - Dong LI
A1 - Peng ZENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 9
SP - 1173
EP - 1192
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300806
Abstract: industrial Internet, motivated by the deep integration of new-generation information and communication technology (ICT) and advanced manufacturing technology, will open up the production chain, value chain, and industry chain by establishing complete interconnections between humans, machines, and things. This will also help establish novel manufacturing and service modes, where personalized and customized production for differentiated services is a typical paradigm of future intelligent manufacturing. Thus, there is an urgent requirement to break through the existing chimney-like service mode provided by the hierarchical heterogeneous network architecture and establish a transparent channel for manufacturing and services using a flat network architecture. Starting from the basic concepts of process manufacturing and discrete manufacturing, we first analyze the basic requirements of typical manufacturing tasks. Then, with an overview on the developing process of industrial Internet, we systematically compare the current networking technologies and further analyze the problems of the present industrial Internet. On this basis, we propose to establish a novel "thin waist" that integrates sensing, communication, computing, and control for the future industrial Internet. Furthermore, we perform a deep analysis and engage in a discussion on the key challenges and future research issues regarding the multi-dimensional collaborative sensing of task–resource, the end-to-end deterministic communication of heterogeneous networks, and virtual computing and operation control of industrial Internet.
[1]3GPP, 2017. Service Requirements for the 5G System (Release 15). Technical Specification No. 22.261, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3107 [Accessed on Apr. 16, 2023].
[2]3GPP, 2018. Study on Communication for Automation in Vertical Domains (CAV) (Release 15). Technical Report No. 22.804, 3GPP. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3187 [Accessed on Apr. 16, 2023].
[3]3GPP, 2020. Enhanced Industrial Internet of Things (IoT) and Ultra-Reliable and Low Latency Communication (URLLC) Support for NR (Release 17). RP-200799, 3GPP. https://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_88e/Docs [Accessed on Apr. 16, 2023].
[4]Afolabi I, Taleb T, Samdanis K, et al., 2018. Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutor, 20(3):2429-2453.
[5]Aledhari M, Razzak R, Parizi RM, et al., 2020. Federated learning: a survey on enabling technologies, protocols, and applications. IEEE Access, 8:140699-140725.
[6]Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065-1082.
[7]Ansari J, Andersson C, de Bruin P, et al., 2022. Performance of 5G trials for industrial automation. Electronics, 11(3):412.
[8]Arulkumaran K, Deisenroth MP, Brundage M, et al., 2017. Deep reinforcement learning: a brief survey. IEEE Signal Process Mag, 34(6):26-38.
[9]Beck M, 2019. On the hourglass model. Commun ACM, 62(7):48-57.
[10]Chi HR, Wu CK, Huang NF, et al., 2023. A survey of network automation for industrial Internet-of-Things toward Industry 5.0. IEEE Trans Ind Inform, 19(2):2065-2077.
[11]Chiwewe TM, Mbuya CF, Hancke GP, 2015. Using cognitive radio for interference-resistant industrial wireless sensor networks: an overview. IEEE Trans Ind Inform, 11(6):1466-1481.
[12]Cui YH, Liu F, Jing XJ, et al., 2021. Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges. IEEE Netw, 35(5):158-167.
[13]Dang SP, Amin O, Shihada B, et al., 2020. What should 6G be? Nat Electron, 3(1):20-29.
[14]Danielis P, Skodzik J, Altmann V, et al., 2014. Survey on real-time communication via Ethernet in industrial automation environments. Proc IEEE Emerging Technology and Factory Automation, p.1-8.
[15]de Donato W, Pescapé A, Dainotti A, 2014. Traffic identification engine: an open platform for traffic classification. IEEE Netw, 28(2):56-64.
[16]Dutra D, de Oliveira VC, Silva JR, 2013. Manufacturing as Service: the challenge of intelligent manufacturing. IFAC Proc Vol, 46(7):281-287.
[17]Farooq MS, Abdullah M, Riaz S, et al., 2023. A survey on the role of industrial IoT in manufacturing for implementation of smart industry. Sensors, 23(21):8958.
[18]Garg S, Kaur K, Kaddoum G, et al., 2021. SDN-NFV-aided edge-cloud interplay for 5G-envisioned energy Internet ecosystem. IEEE Netw, 35(1):356-364.
[19]General Electric, 2013. Industrial Internet: Pushing the Boundaries of Minds and Machines. https://www.ge.com/news/sites/default/files/5901.pdf [Accessed on Apr. 14, 2023].
[20]Hampel G, Li C, Li JY, 2019. 5G ultra-reliable low-latency communications in factory automation leveraging licensed and unlicensed bands. IEEE Commun Mag, 57(5):117-123.
[21]Haykin S, 2005. Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun, 23(2):201-220.
[22]Hazra A, Adhikari M, Amgoth T, et al., 2023. A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions. ACM Comput Surv, 55(1):9.
[23]He YH, Shen JL, Xiao K, et al., 2020. A sparse protocol parsing method for IIoT protocols based on HMM hybrid model. IEEE Int Conf on Communications, p.1-6.
[24]Holfeld B, Wieruch D, Wirth T, et al., 2016. Wireless communication for factory automation: an opportunity for LTE and 5G systems. IEEE Commun Mag, 54(6):36-43.
[25]Huang VKL, Pang ZB, Chen CJA, et al., 2018. New trends in the practical deployment of industrial wireless: from noncritical to critical use cases. IEEE Ind Electron Mag, 12(2):50-58.
[26]IEC, 2010. Industrial Communication Networks—Wireless Communication Network and Communication Profile—WirelessHART™. IEC 62591:2010. National Standards of Switzerland.
[27]IEC, 2011. Industrial Communication Networks—Fieldbus Specifications—WIA-PA Communication Network and Communication Profile. IEC 62601:2011. National Standards of Switzerland.
[28]IEC, 2013. Enterprise-Control System Integration—Part 1: Models and Terminology. IEC 62264:2013. International Electrotechnical Commission.
[29]IEC, 2014a. Industrial Communication Networks—Fieldbus Specifications—Part 1: Overview and Guidance for the IEC 61158 and IEC 61784 Series. IEC 61158-1:2014. National Standards of Switzerland.
[30]IEC, 2014b. Industrial Networks—Wireless Communication Network and Communication Profile—ISA100.11a. IEC 62734:2014. National Standards of Switzerland.
[31]IEC, 2017. Networks—Wireless Communication Network and Communication Profile—WIA-FA. IEC 62948:2017. National Standards of Switzerland.
[32]Jiang CX, Cong Y, Chen JM, et al., 2024. Rethinking development and major research plans of industrial Internet in China. Fundam Res, 4(1):3-7.
[33]Jin X, Xia CQ, Xu C, et al., 2023. Mixed-Criticality Industrial Wireless Networks. Springer, Singapore, p.1-9.
[34]Kim KS, Kim DK, Chae CB, et al., 2019. Ultrareliable and low-latency communication techniques for tactile Internet services. Proc IEEE, 107(2):376-393.
[35]Ksentini A, Frangoudis PA, 2020. Toward slicing-enabled multi-access edge computing in 5G. IEEE Netw, 34(2):99-105.
[36]Kusiak A, 2020. Service manufacturing = Process-as-a-Service + Manufacturing Operations-as-a-Service. J Intell Manuf, 31(1):1-2.
[37]Lei W, Soong ACK, Liu JH, et al., 2021. 5G System Design: an End to End Perspective (2nd Ed.). Springer, Cham, Germany, p.9-20.
[38]Li JQ, Yu FR, Deng GO, et al., 2017. Industrial Internet: a survey on the enabling technologies, applications, and challenges. IEEE Commun Surv Tutor, 19(3):1504-1526.
[39]Liang W, Zhang XL, Xiao Y, et al., 2011. Survey and experiments of WIA-PA specification of industrial wireless network. Wirel Commun Mob Comput, 11(8):1197-1212.
[40]Liang YC, Zhang QQ, Larsson EG, et al., 2020. Symbiotic radio: cognitive backscattering communications for future wireless networks. IEEE Trans Cogn Commun Netw, 6(4):1242-1255.
[41]Liu XY, Xu C, Yu HB, et al., 2022. Multi-agent deep reinforcement learning for end–edge orchestrated resource allocation in industrial wireless networks. Front Inform Technol Electron Eng, 23(1):47-60.
[42]Nasrallah A, Thyagaturu AS, Alharbi Z, et al., 2019. Ultra-low latency (ULL) networks: the IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun Surv Tutor, 21(1):88-145.
[43]Pang ZB, Luvisotto M, Dzung D, 2017. Wireless high-performance communications: the challenges and opportunities of a new target. IEEE Ind Electron Mag, 11(3):20-25.
[44]Pop P, Raagaard ML, Gutierrez M, et al., 2018. Enabling fog computing for industrial automation through time-sensitive networking (TSN). IEEE Commun Stand Mag, 2(2):55-61.
[45]Posada J, Toro C, Barandiaran I, et al., 2015. Visual computing as a key enabling technology for Industrie 4.0 and industrial Internet. IEEE Comput Graph Appl, 35(2):26-40.
[46]Prados-Garzon J, Taleb T, 2021. Asynchronous time-sensitive networking for 5G backhauling. IEEE Netw, 35(2):144-151.
[47]Qian F, 2023. The future of smart process manufacturing. Engineering, 22(3):20-22.
[48]Qian F, Zhong WM, Du WL, 2017. Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Engineering, 3(2):154-160.
[49]Qin W, Chen SQ, Peng MG, 2020. Recent advances in industrial Internet: insights and challenges. Digit Commun Netw, 6(1):1-13.
[50]Qin ZJ, Zhou XW, Zhang L, et al., 2020. 20 years of evolution from cognitive to intelligent communications. IEEE Trans Cogn Commun Netw, 6(1):6-20.
[51]Scanzio S, Wisniewski L, Gaj P, 2021. Heterogeneous and dependable networks in industry—a survey. Comput Ind, 125:103388.
[52]Seol Y, Hyeon D, Min JH, et al., 2021. Timely survey of time-sensitive networking: past and future directions. IEEE Access, 9:142506-142527.
[53]Shao YY, Xue YB, Li J, 2014. PPP: towards parallel protocol parsing. China Commun, 11(10):106-116.
[54]Trammell B, Hildebrand J, 2014. Evolving transport in the Internet. IEEE Int Comput, 18(5):60-64.
[55]University of Oulu, 2019. White Paper: Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. University of Oulu, Oulu, Finland.
[56]Verhappen I, 2016. WIA-PA and WIA-FA to Be Added to IEC Wireless Standards. https://www.controlglobal.com/network/wireless/article/11320265/wia-pa-and-wia-fa-to-be-added-to-iec-wireless-standards [Accessed on Apr. 16, 2023].
[57]Vitturi S, Tramarin F, Seno L, 2013. Industrial wireless networks: the significance of timeliness in communication systems. IEEE Ind Electron Mag, 7(2):40-51.
[58]Wang Q, Jiang J, 2016. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Commun Surv Tutor, 18(3):2197-2219.
[59]Wang TR, Zhang Y, Yu HB, et al., 2012. Advanced Manufacturing Technology in China: a Roadmap to 2050. Springer Berlin, Heidelberg, Germany, p.57-60.
[60]Wollschlaeger M, Sauter T, Jasperneite J, 2017. The future of industrial communication: automation networks in the era of the Internet of Things and Industry 4.0. IEEE Ind Electron Mag, 11(1):17-27.
[61]Xu C, Zeng P, Yu HB, et al., 2021. WIA-NR: ultra-reliable low-latency communication for industrial wireless control networks over unlicensed bands. IEEE Netw, 35(1):258-265.
[62]Xu C, Yu HB, Zeng P, et al., 2023a. Towards critical industrial wireless control: prototype implementation and experimental evaluation on URLLC. IEEE Commun Mag, 61(9):193-199.
[63]Xu C, Tang ZX, Yu HB, et al., 2023b. Digital twin-driven collaborative scheduling for heterogeneous task and edge-end resource via multi-agent deep reinforcement learning. IEEE J Sel Areas Commun, 41(10):3056-3069.
[64]Xu C, Du XY, Li XC, et al., 2023c. 5G-based industrial wireless controller: protocol adaptation, prototype development, and experimental evaluation. Actuators, 12(2):49.
[65]Xu HS, Wu J, Pan QQ, et al., 2023. A survey on digital twin for industrial Internet of Things: applications, technologies and tools. IEEE Commun Surv Tutor, 25(4):2569-2598.
[66]Yang T, Yi XL, Lu SW, et al., 2021. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering, 7(9):1224-1230.
[67]Yousuf AM, Rochester EM, Ousat B, et al., 2018. Throughput, coverage and scalability of LoRa LPWAN for Internet of Things. IEEE/ACM 26th Int Symp on Quality of Service, p.1-10.
[68]Yu HB, Zeng P, Xu C, 2022. Industrial wireless control networks: from WIA to the future. Engineering, 8:18-24.
[69]Yu HB, Zeng P, Zheng M, et al., 2023. Performance Controllable Industrial Wireless Networks. Springer, Singapore, p.1-11.
[70]Zhang HK, Quan W, 2022. Networking automation and intelligence: a new era of network innovation. Engineering, 17:13-16.
[71]Zheng M, Liang W, Yu HB, et al., 2017. Performance analysis of the industrial wireless networks standard: WIA-PA. Mob Netw Appl, 22(1):139-150.
[72]Zhuang FZ, Qi ZY, Duan KY, et al., 2021. A comprehensive survey on transfer learning. Proc IEEE, 109(1):43-76.
Open peer comments: Debate/Discuss/Question/Opinion
<1>