CLC number:
On-line Access: 2025-01-24
Received: 2024-04-30
Revision Accepted: 2024-10-04
Crosschecked: 2025-01-24
Cited: 0
Clicked: 365
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-0472-7314
https://orcid.org/0009-0004-5263-0845
https://orcid.org/0000-0002-2790-4638
Yicen LI, Mingyang CHANG, Hao XUE, Haixia LIU, Long LI. Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1732-1741.
@article{title="Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design",
author="Yicen LI, Mingyang CHANG, Hao XUE, Haixia LIU, Long LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1732-1741",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400345"
}
%0 Journal Article
%T Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design
%A Yicen LI
%A Mingyang CHANG
%A Hao XUE
%A Haixia LIU
%A Long LI
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1732-1741
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400345
TY - JOUR
T1 - Simultaneous wireless information and power transmission system based on a dual-frequency metasurface design
A1 - Yicen LI
A1 - Mingyang CHANG
A1 - Hao XUE
A1 - Haixia LIU
A1 - Long LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1732
EP - 1741
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400345
Abstract: Nowadays, the number of wireless sensor devices is increasing rapidly, posing persistent challenges related to battery replacement and power wiring. This paper presents a simultaneous wireless information and power transmission (SWIPT) scheme based on a frequency diversity metasurface design, which provides a wireless power supply scheme for electrical devices such as sensors. The metasurface is designed with frequency bands commonly found in the environment, and achieves efficient absorption of electromagnetic (EM) energy at 5.8 GHz and radiation of sensor information at 2.45 GHz, making it possible to take full advantage of the energy in the environment and easy to integrate with existing systems. The branches for the dual-square loop are designed based on spatial impedance matching and equivalent circuit, giving the metasurface advantages such as compact layout (unit size of 0.16λ0×0.16λ0×0.012λ0, where λ0 is the wavelength at 2.45 GHz), high isolation (S21<-20 dB within the operating frequency band), and insensitivity to incident angles (efficiency over 80% within 60°). Integrated with rectification circuits and sensors, it efficiently converts EM waves received by the metasurface into direct current (DC) power for sensor operation. The sensors then radiate information through the metasurface, effectively addressing challenges related to sensor device wiring and battery replacement, thereby offering new solutions for the development of next-generation smart cities.
[1]Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065-1082.
[2]Bakogianni S, Koulouridis S, 2016. Design of a novel miniature implantable rectenna for in-body medical devices power support. Proc 10th European Conf on Antennas and Propagation, p.1-5.
[3]Chang MY, Li YC, Han JQ, et al., 2024. A compact polarization insensitive rectenna with harmonic suppression for wireless power transfer. IEEE Antenn Wirel Propag Lett, 23(1):119-123.
[4]Cheng HW, Yu TC, Luo CH, 2013. Direct current driving impedance matching method for rectenna using medical implant communication service band for wireless battery charging. IET Microw Antenn Propag, 7(4):277-282.
[5]El Badawe M, Ramahi OM, 2018. Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting. Prog Electromagn Res, 161:35-40.
[6]Erkmen F, Ramahi OM, 2021. A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer. IEEE Trans Microw Theory Techn, 69(9):4021-4028.
[7]Fang C, Yu FR, Huang T, et al., 2015. A survey of green information-centric networking: research issues and challenges. IEEE Commun Surv Tut, 17(3):1455-1472.
[8]Fante RL, McCormack MT, 1988. Reflection properties of the Salisbury screen. IEEE Trans Antenn Propag, 36(10):1443-1454.
[9]Gao X, Wang XR, Wang WJ, 2023. Polarization-independent dual-band metasurface absorber for wireless power transmission. J Phys Conf Ser, 2469(1):012003.
[10]Gong TR, Gavriilidis P, Ji R, et al., 2024. Holographic MIMO communications: theoretical foundations, enabling technologies, and future directions. IEEE Commun Surv Tut, 26(1):196-257.
[11]Huang XJ, Wang K, Sun CZ, et al., 2023. A multi-frequency and multi-mode metasurface energy harvester for RF energy harvesting. Smart Mater Struct, 32(10):105010.
[12]Langley RJ, Parker EA, 1983. Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett, 19(17):675-677.
[13]Lee K, Hong SK, 2020. Rectifying metasurface with high efficiency at low power for 2.45 GHz band. IEEE Antenn Wirel Propag Lett, 19(12):2216-2220.
[14]Li L, Liu HX, Zhang HY, et al., 2018. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans Ind Electron, 65(4):3230-3239.
[15]Liao R, Chen L, 2022. An evolutionary note on smart city development in China. Front Inform Technol Electron Eng, 23(6):966-974.
[16]Lin W, Ziolkowski RW, 2019. Electrically small Huygens antenna-based fully-integrated wireless power transfer and communication system. IEEE Access, 7:39762-39769.
[17]Liu HX, Li YC, Cheng FJ, et al., 2024. Holographic tensor metasurface for simultaneous wireless powers and information transmissions using polarization diversity. Adv Funct Mater, 34(2):2307806.
[18]Lu P, Yang XS, Wang BZ, 2017. A two-channel frequency reconfigurable rectenna for microwave power transmission and data communication. IEEE Trans Antenn Propag, 65(12):6976-6985.
[19]Mohsan SAH, Qian H, Amjad H, 2023. A comprehensive review of optical wireless power transfer technology. Front Inform Technol Electron Eng, 24(6):767-800.
[20]Piñuela M, Mitcheson PD, Lucyszyn S, 2013. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Techn, 61(7):2715-2726.
[21]Shan Z, Shi L, Li B, et al., 2024. Empowering smart city situational awareness via big mobile data. Front Inform Technol Electron Eng, 25(2):286-307.
[22]Shibata T, Sasaya T, Kawahara N, 2001. Development of in‐pipe microrobot using microwave energy transmission. Electron Commun Jpn (Part II Electron), 84(11):1-8.
[23]Wagih M, Hilton GS, Weddell AS, et al., 2021. Dual-band dual-mode textile antenna/rectenna for simultaneous wireless information and power transfer (SWIPT). IEEE Trans Antenn Propag, 69(10):6322-6332.
[24]Wang CC, Zhang JL, Bai SB, et al., 2022. A harmonic suppression energy collection metasurface insensitive to load and input power for microwave power transmission. IEEE Trans Microw Theory Techn, 70(8):4036-4044.
[25]Wang X, Han JQ, Li GX, et al., 2023. High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface. Nat Commun, 14(1):6002.
[26]Xue H, Lu ZQ, Ma XJ, et al., 2024. A reconfigurable metasurface enhancing signal coverage for wireless communication using reduced numbers of p-i-n diodes. IEEE Trans Microw Theory Techn, 72(3):1964-1978.
[27]Yang XX, Jiang C, Elsherbeni AZ, et al., 2013. A novel compact printed rectenna for data communication systems. IEEE Trans Antenn Propag, 61(5):2532-2539.
[28]Yu F, Yang XX, Zhong HT, et al., 2018. Polarization-insensitive wide-angle-reception metasurface with simplified structure for harvesting electromagnetic energy. Appl Phys Lett, 113(12):123903.
[29]Zhang XM, Liu HX, Li L, 2017. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting. Appl Phys Lett, 111(7):071902.
[30]Zhong HT, Yang XX, Tan C, et al., 2016. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Appl Phys Lett, 109(25):253904.
Open peer comments: Debate/Discuss/Question/Opinion
<1>