CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5202
ZHANG Liang-jun, LI Jiang, SONG Zhi-huan, LI Ping. Robust predictive control of uncertain intergrating linear systems with input constraints[J]. Journal of Zhejiang University Science A, 2002, 3(4): 418-425.
@article{title="Robust predictive control of uncertain intergrating linear systems with input constraints",
author="ZHANG Liang-jun, LI Jiang, SONG Zhi-huan, LI Ping",
journal="Journal of Zhejiang University Science A",
volume="3",
number="4",
pages="418-425",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0418"
}
%0 Journal Article
%T Robust predictive control of uncertain intergrating linear systems with input constraints
%A ZHANG Liang-jun
%A LI Jiang
%A SONG Zhi-huan
%A LI Ping
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 4
%P 418-425
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0418
TY - JOUR
T1 - Robust predictive control of uncertain intergrating linear systems with input constraints
A1 - ZHANG Liang-jun
A1 - LI Jiang
A1 - SONG Zhi-huan
A1 - LI Ping
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 4
SP - 418
EP - 425
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0418
Abstract: This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.
[1] Badgwell, T. A., 1997. Robust model predictive control of stable linear systems, Int. J. Control. 68(4):797-818.
[2] Lee, J. H., Yu, Z. H., 1997. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 33(5):763-781.
[3] Lee, J. H., Cooley, B. L., 2000. Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices. Automatica, 36(3):463-473.
[4] Li, J., Zhou, W., Zhang, L.J., Li, P., 2002, Fuzzy NN based predictive control and its application to green liquor system. Journal of Zhejiang University (SCIENCE), 3(1):57-59.
[5] Mayne, D. Q., Rawlings, J. B., Rao, C. V., Scokaert, P. O. M., 2000. Constrained model predictive control: Stability and optimality. Automatica, 36:789-814.
[6] Morari, M., Lee, J.H.,1999. Model predictive Control: past, present and future. Computers Chem. Engng., 23(4-5):667-682.
[7] Qin, S. J., Badgwell, T. A., 1997. An overvoew of industrial model predictive control technology, Fifth international conference on chemical process control. AIChE Symposium Series, 93:232-256.
[8] Ralhan, S., Badgwell, T. A., 2000a. Robust control of stable linear systems with continuous uncertainty. Computers Chem. Engng., 24(11):2533-2544.
[9] Ralhan, S., Badgwell, T. A., 2000b. Robust model predictive control for integrat ing linear systems with bounded parameters. Ind. Eng. Chem. Res. 39(8):2981-2991.
[10] Rawlings, J. B., Muske, K. R., 1993. The stability of constrained receding horizon control. IEEE Trans-AC., 38(10):1512-1516.
Open peer comments: Debate/Discuss/Question/Opinion
<1>