CLC number: TQ150.9; O646.5; X783
On-line Access:
Received: 2004-05-24
Revision Accepted: 2004-08-02
Crosschecked: 0000-00-00
Cited: 6
Clicked: 6445
MAHAR A.N., MUNIR M., ELAWAD S., GOWEN S.R., HAGUE N.G.M.. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae[J]. Journal of Zhejiang University Science A, 2004, 5(10): 1183-1190.
@article{title="Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae",
author="MAHAR A.N., MUNIR M., ELAWAD S., GOWEN S.R., HAGUE N.G.M.",
journal="Journal of Zhejiang University Science A",
volume="5",
number="10",
pages="1183-1190",
year="2004",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2004.1183"
}
%0 Journal Article
%T Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae
%A MAHAR A.N.
%A MUNIR M.
%A ELAWAD S.
%A GOWEN S.R.
%A HAGUE N.G.M.
%J Journal of Zhejiang University SCIENCE A
%V 5
%N 10
%P 1183-1190
%@ 1869-1951
%D 2004
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2004.1183
TY - JOUR
T1 - Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae
A1 - MAHAR A.N.
A1 - MUNIR M.
A1 - ELAWAD S.
A1 - GOWEN S.R.
A1 - HAGUE N.G.M.
J0 - Journal of Zhejiang University Science A
VL - 5
IS - 10
SP - 1183
EP - 1190
%@ 1869-1951
Y1 - 2004
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2004.1183
Abstract: Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, xenorhabdus nematophila taken from the entomopathogenic nematode steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.
[1] Akhurst, R.J., Boemare, N.E., 1990. Biology and Taxonomy of Xenorhabdus. In: Gaugler, R., Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. C.R.C. Press, Boca Raton, Florida, p.75-90.
[2] Balcerzak, M., 1991. Comparative studies on parasitism caused by entomogenous nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. The roles of the nematode-bacterial complex, and of the associated bacteria alone, in pathogenesis. Acta Parasitologica Polonica, 36:175-181.
[3] Boemare, N.E., Givaudan, A., Brehelin, M., Laumond, C., 1997. Symbiosis and pathogencity of nematode bacterium complexes. Symbiosis, 22:21-45.
[4] Dudney, R.A., 1997. Use of Xenorhabdus Nematophilus Im/l and 1906/1 for Fire Ant Control. US Patent, No. 5616318.
[5] Elawad, S.A., 1998. Studies on the Taxonomy and Biology of A Newly Isolated Species of Steinernema (Steinernematidae: Nematoda) from the Tropics and Its Associated Bacteria. Ph.D. Thesis. Department of Agriculture, University of Reading, UK.
[6] Elawad, S.A., Gowen, S.R., Hague, N.G.M., 1999. Efficacy of bacterial symbionts from entomopathogenic nematodes against the beet army worm (Spodoptera exigua). Test of Agrochemicals and Cultivars No. 20, Annals of Applied Biology (Supplement), 134:66-67.
[7] Ensign, J.C., Bowen, D.J., Tenor, J.L., Ciche, T.A., Petell, J.K., Strickland, J.A., Orr, G.L., Fatig, R.O., Bintrim, S.B., ffrench-Constant, R.H., 2002. Proteins from the Genus Xenorhabdus are Toxic to Insects on Oral Exposure. US Patent, No. 0147148 A1.
[8] ffrench-Constant, R., Bowen, D., 1999. Photorhabdus toxins: novel biological insecticides. Current Opinion in Microbiology, 2:284-288.
[9] Forst, S., Nealson, K., 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews, 60:21-43.
[10] Georgis, R., Hague, N.G.M., 1981. A neoplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Annals of Applied Biology, 99:171-177.
[11] Givaudan, A.S., Baghdiguian, S., Lanois, A., Boemare, N., 1995. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Applied Environmental Microbiology, 61:1408-1413.
[12] Gotz, P., Boman, A., Boman, H.G., 1981. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proceedings of Royal Society London, 212:333-350.
[13] Harcourt, D.G., 1962. Biology of cabbage caterpillars in eastern Ontario. Proceedings of the Entomological Society Ontario, 93:61-75.
[14] Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annual Review of Entomology, 38:181-206.
[15] Keinmeesuke, P., Vattanatangum, P., Sarnthoy, O., Sayampol, B., Saito, T., Nakasnji, F., Sinchaisria, N., 1985. Life Table of Diamondback Moth and Its Egg Parasite Trichogrammatoidea bactrae in Thailand. In: Talekar, N.S. (Ed.), Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop, Asian Vegetable Research and Development Center. AVRDC, Tainan, Taiwan, p.309-315.
[16] Mahar, A.N., 2003. The Efficacy of Bacteria Isolated from Entomopathogenic Nematodes Against the Diamondback Moth Plutella Xylostella L. (Lepidoptera: Yponomeutidae). Ph.D. Thesis. Department of Agriculture, University of Reading, UK.
[17] Morris, O.N., 1985. Susceptibility of 31 species of agricultural insect pests to entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Canadian Entomologist, 117:401-407.
[18] Mracek, Z., Hanzal, R., Kodrik, D., 1988. Sites of penetrations of juveniles Steinernematids and Heterorhabditis (Nematoda) in the larvae of G. mellonella (Lepidoptera). Journal of Invertebrate Pathology, 52:477-482.
[19] Poinar, Jr.G.O., 1979. Nematodes for Biological Control of Insects. C.R.C. Press, Boca Raton, Florida.
[20] Poinar, Jr.G.O., Thomas, G.M., 1966. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode DD-136 (Neoaplectanta sp. Steinernematidae). Parasitology, 56:385-390.
[21] Ratnasinghe, G., Hague, N.G.M., 1997. Efficacy of Entomopathogenic nematodes against the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Pakistan Journal of Nematology, 15:45-53.
[22] Sambeek, J., Wiesner, A., 1999. Successful parasitation of locusts by entomopathogenic nematodes is correlated with inhibition of insect phagocytes. Journal of Invertebrate Pathology, 73:154-161.
[23] Sun, C.N., Wu, T.K., Chen, J.S., Lee, W.T., 1986. Insecticide Resistance in Diamondback Moth. In: Talekar, N.S., Griggs, T.D. (Eds.), Diamondback Moth Management: Proceedings of the First International Workshop, Asian Vegetable Research and Development Center. AVRDC, Shanhua, Taiwan, p.359-371.
[24] Tabashink, B.E., Cushing, N.L., Finson, N., Johnson, M.W., 1990. Field development of resistance to Bacillus thuringiensis in Diamondback moth (Lepidoptera: Plutellidea). Journal of Economic Entomology, 83:1671-1676.
[25] Webster, J.M., Chen, G., Hu, K., Li, J., 2002. Bacterial Metabolites. In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CAB International, Wallingford, UK, p. 99-114.
[26] Woodring, J.L., Kaya, H.K., 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Biology and Techniques. Arkansas Experiment Station, Fayetteville, AR, USA, Southern Cooperatives Series Bulletin 331, p.28.
Open peer comments: Debate/Discuss/Question/Opinion
<1>