CLC number: TP18
On-line Access:
Received: 2004-06-22
Revision Accepted: 2005-02-05
Crosschecked: 0000-00-00
Cited: 0
Clicked: 7550
LIU Yi-jian, ZHANG Jian-ming, WANG Shu-qing. Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm[J]. Journal of Zhejiang University Science A, 2005, 6(10): 1026-1029.
@article{title="Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm",
author="LIU Yi-jian, ZHANG Jian-ming, WANG Shu-qing",
journal="Journal of Zhejiang University Science A",
volume="6",
number="10",
pages="1026-1029",
year="2005",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2005.A1026"
}
%0 Journal Article
%T Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm
%A LIU Yi-jian
%A ZHANG Jian-ming
%A WANG Shu-qing
%J Journal of Zhejiang University SCIENCE A
%V 6
%N 10
%P 1026-1029
%@ 1673-565X
%D 2005
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2005.A1026
TY - JOUR
T1 - Parameter estimation of cutting tool temperature nonlinear model using PSO algorithm
A1 - LIU Yi-jian
A1 - ZHANG Jian-ming
A1 - WANG Shu-qing
J0 - Journal of Zhejiang University Science A
VL - 6
IS - 10
SP - 1026
EP - 1029
%@ 1673-565X
Y1 - 2005
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2005.A1026
Abstract: In cutting tool temperature experiment, a large number of related data could be available. In order to define the relationship among the experiment data, the nonlinear regressive curve of cutting tool temperature must be constructed based on the data. This paper proposes the particle Swarm Optimization (PSO) algorithm for estimating the parameters such a curve. The PSO algorithm is an evolutional method based on a very simple concept. Comparison of PSO results with those of GA and LS methods showed that the PSO algorithm is more effective for estimating the parameters of the above curve.
[1] Aso, M., Saikawa, T., Hattori, T., 2002. Mobile station location estimation using the maximum likelihood method in sector cell systems. Vehicular Technology Conference, 2:1192-1196.
[2] Eberhart, R., Shi, Y.H., 2001. Tracking and Optimizing Dynamic Systems with Particle Swarms. Proc. IEEE Int. Conf. on Evolutionary Computation, Hawaii, p.94-100.
[3] Guo, C.Y., He, G., Chen, G.J., 2003. Application of genetic algorithm in identifying nonlinear regressive model. Journal of Naval University of Engineering, 15(2):70-73.
[4] Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization . Proc. IEEE Int. Conf. on Neural Networks, Perth, p.1492-1948.
[5] Parsopoulos, K.E., Vrahatis, M.N., 2002. Recent approach to global optimization problems through Particle Swarm Optimization. Natural Computing, 1(2/3):235-306.
[6] Ray, T., Liew, K.M., 2001. A Swarm with Effective Information Sharing Mechanism for Unconstrained and Constrained Single Objective Optimization Problems. Proc. IEEE Int. Conf. on Evolutionary Computation, Seoul, p.75-80.
[7] Shi, Y.H., Eberhart, R., 1998. Parameter Selection in Particle Swarm Optimization. Proc. of the 7th Annual Conf. on Evolutionary Programming, Washington DC, p.591-600.
[8] Yin, L., Liu, Q., Wang, H.W., 2003. Two typical applications of the Related Partial Least Square algorithms in the field of system modeling. Journal of System Simulation, 15(1):135-137,145.
[9] Yu, X.M., Li, Y., Xiong, X.Y., Wu, Y.W., 2003. Optimal Shunt Capacitor placement using Particle Swarm Optimization algorithm with harmonic distortion consideration. Proceedings of the CSEE, 23(2):26-30,120.
[10] Zhou, J.X., Liu, Y.T., Yu, Q.X., 1998. GA algorithm for cutting experiment data drawing. Journal of Southwest Petroleum Institute, 29(3):62-63.
Open peer comments: Debate/Discuss/Question/Opinion
<1>