Full Text:   <2363>

CLC number: O153.3

On-line Access: 

Received: 2005-10-08

Revision Accepted: 2006-01-04

Crosschecked: 0000-00-00

Cited: 0

Clicked: 4215

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2006 Vol.7 No.6 P.1077-1083


Almost split sequences for symmetric non-semisimple Hopf algebras

Author(s):  SHI Mei-hua

Affiliation(s):  Department of Mathematics, Zhejiang Education Institute, Hangzhou 310012, China

Corresponding email(s):   smh@zjei.net

Key Words:  Indecomposable, Unimodular, Almost split sequences, Symmetric non-semisimple Hopf algebras

SHI Mei-hua. Almost split sequences for symmetric non-semisimple Hopf algebras[J]. Journal of Zhejiang University Science A, 2006, 7(6): 1077-1083.

@article{title="Almost split sequences for symmetric non-semisimple Hopf algebras",
author="SHI Mei-hua",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Almost split sequences for symmetric non-semisimple Hopf algebras
%A SHI Mei-hua
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 6
%P 1077-1083
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1077

T1 - Almost split sequences for symmetric non-semisimple Hopf algebras
A1 - SHI Mei-hua
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 6
SP - 1077
EP - 1083
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1077

We first prove that for a finite dimensional non-semisimple Hopf algebra H, the trivial H-module is not projective and so the almost split sequence ended with k exists. By this exact sequence, for all indecomposable H-module X, we can construct a special kind of exact sequence ending with it. The main aim of this paper is to determine when this special exact sequence is an almost split one. For this aim, we restrict H to be unimodular and the square of its antipode to be an inner automorphism. As a special case, we give an application to the quantum double D(H)=(Hop)*H) of any non-semisimple Hopf algebra.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Auslander, M., Reiten, I., Smalø, S.O., 1995. Representation Theory of Artin Algebras. Cambridge University Press, Cambridge.

[2] Böhm, G., Nill, F., Szlachanyi, K., 1999. Weak Hopf algebras I. Integral theory and C*-structure. J. Algebra, 221(2):385-438.

[3] Kassel, C., 1995. Quantum Groups. GTM 155. Springer-Verlag, p.127-128.

[4] Lorenz, M., 1997. Representation of finite dimensinal Hopf algebras. J. Algebra, 188(2):476-505.

[5] Montgomery, S., 1993. Hopf Algebras and Their Actions on Rings. CBMS, Lecture in Math, Providence, RI, 82:215-217.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE