Full Text:   <3061>

CLC number: X51; X82

On-line Access: 

Received: 2006-02-28

Revision Accepted: 2006-05-08

Crosschecked: 0000-00-00

Cited: 7

Clicked: 5569

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2006 Vol.7 No.7 P.542-547


Quantitative estimation of dust fall and smoke particles in Quetta Valley

Author(s):  SAMI Muhammad, WASEEM Amir, AKBAR Sher

Affiliation(s):  Department of Chemistry, University of Balochistan, Quetta 87300, Pakistan

Corresponding email(s):   waseemq2000@yahoo.com

Key Words:  Particulate matter (PM), Dust fall, Smoke, Lead, Gasoline

SAMI Muhammad, WASEEM Amir, AKBAR Sher. Quantitative estimation of dust fall and smoke particles in Quetta Valley[J]. Journal of Zhejiang University Science B, 2006, 7(7): 542-547.

@article{title="Quantitative estimation of dust fall and smoke particles in Quetta Valley",
author="SAMI Muhammad, WASEEM Amir, AKBAR Sher",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Quantitative estimation of dust fall and smoke particles in Quetta Valley
%A SAMI Muhammad
%J Journal of Zhejiang University SCIENCE B
%V 7
%N 7
%P 542-547
%@ 1673-1581
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.B0542

T1 - Quantitative estimation of dust fall and smoke particles in Quetta Valley
A1 - SAMI Muhammad
A1 - WASEEM Amir
A1 - AKBAR Sher
J0 - Journal of Zhejiang University Science B
VL - 7
IS - 7
SP - 542
EP - 547
%@ 1673-1581
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.B0542

Tightening of air quality standards for populated urban areas has led to increasing attention to assessment of air quality management areas, where violation of air quality standards occurs, and development of control strategies to eliminate such violation of air quality standards. The Quetta urban area is very densely built and has heavy motorized traffic. The increase of emissions mainly from traffic and industry are responsible for the increase in atmospheric pollution levels during the last years. The dust examined in the current study was collected by both deposit gauge and Petri dish methods at various sites of Quetta Valley. smoke particles were obtained by bladder method from the exhausts of various types of motor vehicles. The concentration of lead found in the smoke ranged from 1.5×10−6 to 4.5×10−6.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Ahmad, N., 1975. Air pollution survey of the Peshawar University area. Pak. J. Sc., 27:149-152.

[2] Al-Rajhi, M.A., Al-Shayeb, S.M., Seaward, M.R.D., Edwards, H.G.M., 1996. Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmospheric Environment, 30(1):145-153.

[3] Ausset, P., Bannery, F., DelMonte, M., Lefevre, R.A., 1998. Recording of pre-industrial atmospheric environment by ancient crusts on stone monuments. Atmospheric Environment, 32(16):2859-2863.

[4] BéruBé, K.A., Jones, T.P., Williamson, B.J., 1997. Electron microscopy of urban airborne particulate matter. Microscopy and Analysis, 11(1):11-13.

[5] Cadle, R.D., 1975. The Measurement of Air Born Particles. John Wiley & Sons, New York.

[6] Cadle, S.H., Dasch, J.M., Kopple, R.V., 1986. Winter time wet and dry deposition in northern Michigan. Atmospheric Environment (1967), 20(6):1171.

[7] Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1999. Source apportionment of PM 2.5 and PM 10 aerosols in Brisbane Australia by receptor modelling. Atmospheric Environment, 33(19):3251-3268.

[8] Dzubay, T.G., Mamane, Y., 1989. Use of electron microscopy data in receptor models. Atmospheric Environment (1967), 23(2):467-476.

[9] Esbert, R.M., Dìaz-Pache, F., Alonso, F.J., Ordaz, J., Grossi, C.M., 1996. Solid Particles of Atmospheric Pollution Found on the Hontoria Limestone of Burgos Cathedral (Spain). Proceedings of the 8th International Congress on Deterioration and Conservation of Stone. MoK ller Druck und Verlag Gmbh, Berlin, p.393-399.

[10] Espinosa, A.J.F., Rodriguez, M.T., DelaRoza, F.J.B., Sanchez, J.C.J., 2001. Size distribution of metals in urban Aerosols in Seville (Spain). Atmospheric Environment, 35(14):2595-2601.

[11] Esteve, V., Rius, J., Ochando, L.E., AmigoH, J.M., 1997. Quantitative X-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling. Atmospheric Environment, 31(23):3963-3967.

[12] Faiz, A., Weaver, C.S., Walsh, M.P., 1996. Air Pollution from Motor Vehicles, 1st Ed. World Bank, Washington DC, USA, p.20433.

[13] Grossi, C.M., Esbert, R.M., Dìaz-Pache, F., 1998. Decay and durability of building stones in urban environments. Materiales de Construccion, 48(252):5-25.

[14] Haleem, N.M., 1991. Pollution interactions (ozone variation) on climate of Quetta. Sci. Tech. and Devel., 10(3):15-19.

[15] Harrison, R.M., Smith, D.J.T., Pio, C.A., Castro, L.M., 1997. Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmospheric Environment, 31(20):3309-3321.

[16] Haynie, F.H., 1985. Size distribution of particles that may contribute to soiling of material surfaces. Journal Air Pollution Control Association, 35:552-554.

[17] Haynie, F.H., 1986. Theoretical Model of Soiling of Surfaces by Airborne Particles in Aerosols: Research, Risk Assessment and Control Strategie. In: Lee, S.D. (Ed.), Proceeding of the Second US-Dutch International Symposium. Lewis Publishers, Williamsburg, Virginia, USA, p.951-959.

[18] Hicks, B.B., Wesley, M.L., Durham, J.L., 1980. In Critique of Methods to Measure Dry Deposition. EPA-600/9-80-050.

[19] Hutchinson, A.J., Johnson, J.B., Thompson, G.E., Wood, G.C., 1992. The role of fly-ash particulate material and oxide catalysts in stone degradation. Atmospheric Environment, 26A(15):2795-2803.

[20] Jacobs, M.B., 1960. The Chemical Analysis of Air Pollutants. Interscience Publishers, New York.

[21] Kalabokas, P.D., Hatzianestis, J., Bartzis, J.G., Papagiannakopoulos, P., 2001. Atmospheric concentrations of saturated and aromatic hydrocarbons around a creek oil refinery. Atmospheric Environment, 35(14):2545-2555.

[22] Kasparian, J., Frejafon, E., Rambaldi, P., Yu, J., Vezin, B., Weolf, J.P., Ritter, P., Viscardi, P., 1998. Characterization of urban aerosols using SEM-microscopy, X-ray analysis and Lidar measurements. Atmospheric Environment, 32(17):2957-2967.

[23] Lanting, R.W., 1986. Black Smoke and Soiling. In: Lee, S.D., Schneider, T., Grnat, L.D., Verkerk, P.J. (Eds.), Aerosols. Lewis Publishers, USA, p.923-932.

[24] Leopold, L.B., 1947. Meteorological factors influencing air pollution in the Los Angeles area. Trans. Am. Geophys. Union, 28:73-192.

[25] Leysen, L.A., Roekens, E.J., Storms, H., van Grieken, R.E., 1987. Classification of suspended particles in deposition samples and run-off water samples from a limestone cathedral. Atmospheric Environment (1967), 21(11):2425-2433.

[26] McMurry, P.H., Litchy, M., Huang, P., Cai, X.P., Turpin, B.J., Dick, W.D., Hanson, A., 1996. Elemental composition and morphology of individual particles separated by size and hygroscopicity with the TDMA. Atmospheric Environment, 30(1):101-108.

[27] Nord, A.G., Svärdh, A., Tronner, K., 1994. Air pollution levels reflected in deposits on building stone. Atmospheric Environment, 28(16):2615-2622.

[28] Paoletti, L., Diociaiuti, M., de Beradis, B., Santucci, S., Lozzi, L., Picozzi, P., 1999. Characterisation of aerosol individual particles in a controlled underground area. Atmospheric Environment, 33(22):3603-3611.

[29] Paoletti, L., Diociauti, M., Falchi, M., Pisant, D., Ziemacki, G., 1991. Quantitative analysis of airborne breathable particles. A comparison between different analytical techniques. Atmospheric Environment, 25B(2):237-242.

[30] Querol, X., Alastuey, A., López-Soler, A., Mantilla, E., Plana, F., 1996. Mineral composition of atmospheric particulates around a large coal-fired power station. Atmospheric Environment, 30(21):3557-3572.

[31] Rodriguez-Flores, M., Rodriguez-Castellon, E., 1982. Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ. Pollut., 4B(4):281-290.

[32] Rodríguez-Navarro, C., Sebastián, E., 1996. Role of particulate matter from vehicle exhausts on porous building stone (limestone) sulfation. Science of the Total Environment, 187(2):79-91.

[33] Rojas, C.M., Artaxo, P., van Grieken, R., 1990. Aerosols in Santiago de Chile: a study using receptor modeling with X-ray fluorescence and single particle analysis. Atmospheric Environment, 24B:227-241.

[34] Torfs, K., van Grieken, R., 1997. Chemical relations between atmospheric aerosols deposition and stone decay layers on historic buildings at the Mediterranean coast. Atmospheric Environment, 31(15):2179-2192.

[35] van Borm, W.A., Adams, F.C., Maenhaut, W., 1989. Characterization of individual particles in the Antwerp aerosol. Atmospheric Environment (1967), 23(5):1139-1151.

[36] van Borm, W.A., Adams, F.C., Maenhaut, W., 1990. Receptor modeling of the Antwerp aerosol. Atmospheric Environment, 24B:419-435.

[37] Wahlin, P., Berkowicz, R., Palmgren, F., 2006. Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40(12):2151-2159.

[38] Warner, P.O., 1976. Analysis of Air Pollution. Wiley Interscience Publication, John Wiley & Sons, New York.

[39] Zappia, G., Sabbioni, C., Gobbi, C., 1991. Carbonaceous aerosol on marble and limestone monuments. Journal of Aerosol Science, 22(1):S581-S584.

[40] Zou, L.Y., Hooper, M.A., 1997. Size-resolved airborne particles and their morphology in central Jakarta. Atmospheric Environment, 31(8):1167-1172.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE