CLC number: O211.4
On-line Access:
Received: 2006-07-31
Revision Accepted: 2006-11-22
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5816
FU Ke-ang, ZHANG Li-xin. Precise asymptotics in the law of the logarithm for random fields in Hilbert space[J]. Journal of Zhejiang University Science A, 2007, 8(4): 651-659.
@article{title="Precise asymptotics in the law of the logarithm for random fields in Hilbert space",
author="FU Ke-ang, ZHANG Li-xin",
journal="Journal of Zhejiang University Science A",
volume="8",
number="4",
pages="651-659",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0651"
}
%0 Journal Article
%T Precise asymptotics in the law of the logarithm for random fields in Hilbert space
%A FU Ke-ang
%A ZHANG Li-xin
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 4
%P 651-659
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0651
TY - JOUR
T1 - Precise asymptotics in the law of the logarithm for random fields in Hilbert space
A1 - FU Ke-ang
A1 - ZHANG Li-xin
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 4
SP - 651
EP - 659
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0651
Abstract: Consider the positive d-dimensional lattice Z+d (d≥2) with partial ordering ≤, let {XK; K∈Z+d be i.i.d. random variables taking values in a real separable hilbert space (H, ||∙||) with mean zero and covariance operator ∑, and set partial sums SN =∑K≤NXK, N∈Z+d. Under some moment conditions, we obtain the precise asymptotics of a kind of weighted infinite series for partial sums SN as ε↘0 by using the truncation and approximation methods. The results are related to the convergence rates of the law of the logarithm in hilbert space, and they also extend the results of (Gut and Spǎtaru, 2003).
[1] Anderson, T.W., 1955. The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc., 6(2):170-176.
[2] Baum, L.E., Katz, M., 1965. Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 120(1):108-123.
[3] Chen, R., 1978. A remark on the tail probability of a distribution. J. Multivariate Anal., 8(2):328-333.
[4] Einmahl, U., 1991. On the almost sure behavior of sums of i.i.d. random variables in Hilbert space. Ann. Probab., 19:1227-1263.
[5] Erdös, P., 1949. On a theorem of Hsu and Robbins. Ann. Math. Statist., 20:286-291.
[6] Erdös, P., 1950. Remark on my paper “On a theorem of Hsu and Robbins”. Ann. Math. Statist., 21:138.
[7] Gut, A., Spǎtaru, A., 2000a. Precise asymptotics in the Baum-Katz and Davis Law of large numbers. J. Math. Anal. Appl., 248(1):233-246.
[8] Gut, A., Spǎtaru, A., 2000b. Precise asymptotics in the law of the iterated logarithm. Ann. Probab., 28(4):1870-1883.
[9] Gut, A., Spǎtaru, A., 2003. Precise asymptotics in some strong limit theorems for multidimensionally indexed random variables. J. Multivariate Anal., 86(2):398-422.
[10] Hardy, G.M., Wright, E.M., 1954. An Introduction to the Theory of Numbers (3rd Ed.). Oxford University Press, Oxford, p.252-255.
[11] Heyde, C.C., 1975. A supplement to the strong law of large numbers. J. Appl. Probab., 12(1):173-175.
[12] Hsu, P.L., Robbins, H., 1947. Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA, 33(2):25-31.
[13] Huang, W., Zhang, L.X., 2005. Precise rates in the law of the logarithm in the Hilbert space. J. Math. Anal. Appl., 304(2):734-758.
[14] Lanzinger, H., Stadtmüller, U., 2004. Refined Baum-Katz Laws for weighted sums of iid random variables. Statist. Probab. Lett., 69(3):357-368.
[15] Spǎtaru, A., 2004a. Exact asymptotics in log log laws for random fields. J. Theor. Probab., 17(4):943-965.
[16] Spǎtaru, A., 2004b. Precise asymptotics for a series of T.L. Lai. Proc. Amer. Math. Soc., 132(11):3387-3395.
[17] Spitzer, F., 1956. A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc., 82(2):323-339.
Open peer comments: Debate/Discuss/Question/Opinion
<1>