CLC number: X52
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 6128
Zhen ZHANG, Jing-jing WO, Naman CISSOKO, Xin-hua XU. Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid[J]. Journal of Zhejiang University Science A, 2008, 9(1): 118-124.
@article{title="Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid",
author="Zhen ZHANG, Jing-jing WO, Naman CISSOKO, Xin-hua XU",
journal="Journal of Zhejiang University Science A",
volume="9",
number="1",
pages="118-124",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071313"
}
%0 Journal Article
%T Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid
%A Zhen ZHANG
%A Jing-jing WO
%A Naman CISSOKO
%A Xin-hua XU
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 1
%P 118-124
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071313
TY - JOUR
T1 - Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid
A1 - Zhen ZHANG
A1 - Jing-jing WO
A1 - Naman CISSOKO
A1 - Xin-hua XU
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 1
SP - 118
EP - 124
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071313
Abstract: The remediation of groundwater which contains chlorinated organic compounds (COCs) by nanoscale bimetallic catalysts has received increasing interest in recent years. This report presents the dechlorination of 2,4-dichlorophenol (2,4-DCP) by pd-Fe bimetallic nanoparticles in the presence of humic acid (HA) to investigate the feasibility of using Pd-Fe for the in situ remediation of contaminated groundwater. Our experimental results indicated that HA had an adverse effect on the dechlorination of 2,4-DCP by Pd-Fe nanoparticles. The rate constant k values of 2,4-DCP dechlorination were 0.017, 0.013, 0.009, 0.006 and 0.004 min−1 for HA concentrations of 0, 5, 10, 15 and 20 mg/L, respectively. The relationship between HA dosage and k values can be described as a linear model.
[1] Allen-King, R.M., Halket, R.M., Burris, D.R., 1997. Reductive transformation and sorption of cis- and trans-1,2-dichloroethene in a metallic iron-water system. Environ. Toxicol. Chem., 16(3):424-429.
[2] Burris, D.R., Campbell, T.J., Manoranjan, V.S., 1995. Sorption of trichloroethylene and etrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol., 29(11):2850-2855.
[3] Cheng, S.F., Wu, S.C., 2001. Feasibility of using metals to remediate water containing TCE. Chemosphere, 43(8):1023-1028.
[4] Coq, B., Figueras, F., 2001. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J. Mol. Catal. A-Chem., 173(1-2):117-134.
[5] Curtis, G.P., Reinhard, M., 1994. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfate and humic acid. Environ. Sci. Technol., 28(13):2393-2401.
[6] Doong, R.A., Lai, Y.L., 2005. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res., 39(11):2309-2318.
[7] Doong, R.A., Lai, Y.L., 2006. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 64(3):371-378.
[8] He, F., Zhao, D., 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 39(9):3314-3320.
[9] Johnson, T.L., Fish, W., Gorby, Y.A., Tratnyek, P.G., 1998. Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface. J. Contam. Hydrol., 29(4):379-398.
[10] Lien, H.L., Zhang, W.X., 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191:97-105.
[11] Muftikian, R., Nebesny, K., Fernando, Q., Korte, N., 1996. X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants. Environ. Sci. Technol., 30(12):3593-3596.
[12] Murphy, E.M., Zachara, J.M., Smith, S.C., 1990. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol., 24(10):1507-1516.
[13] Oliver, B.G., Nicol, K.D., 1982. Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario. Environ. Sci. Technol., 16(8):532-536.
[14] Schrick, B., Blough, J.L., Jones, A.D., Mallouk, T.E., 2002. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoscales. Chem. Mater., 14(12):5140-5147.
[15] Schwarzenbach, R.P., Molnar-Kubica, E., Giger, W., Wakeham, S.G., 1979. Distribution, residence time, and fluxes of tetrachloroethylene and 1,4-dichlorobenzene in Lake Zurich, Switzerland. Environ. Sci. Technol., 13(11):1367-1373.
[16] Tratnyek, P.G., Schere, M.M., Hu, S., 2001. Effects of natural organic matter anthropogenic surfactants, and model quinones on the reduction of contaminants by zerovalent iron. Water Res., 35(18):4435-4443.
[17] Wang, C.Y., Chen, Z.Y., Cheng, B., Zhu, Y.R., Liu, H.J., 1999. The preparation, surface modification, and characterization of metallic α-Fe nanoparticles. Chin. J. Chem. Physics, 12:670-674.
[18] Wei, J.J., Liu, Y., Wang, D.H., 2006. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res., 40(2):348-354.
[19] Wu, L.F., Stephen, M.C., 2006. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoscales. Chemosphere, 63(2):285-292.
[20] Xie, L., Shang, C., 2005. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ. Sci. Technol., 39(4):1092-1100.
[21] Xu, X.H., Zhou, H.Y., He, P., Wang, D.H., 2005a. Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts. Chemosphere, 58(8):1135-1140.
[22] Xu, X.H., Zhou, H.Y., Wang, D.H., 2005b. Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water. Chemosphere, 58(11):1497-1502.
[23] Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 40(4):387-395.
[24] Zhu, B.W., Lim, T.T., Feng, J., 2006. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65(7):1137-1146.
Open peer comments: Debate/Discuss/Question/Opinion
<1>