CLC number: O621.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 23
Clicked: 6514
Jie HE, Wen-nan ZHANG. Research on ethanol synthesis from syngas[J]. Journal of Zhejiang University Science A, 2008, 9(5): 714-719.
@article{title="Research on ethanol synthesis from syngas",
author="Jie HE, Wen-nan ZHANG",
journal="Journal of Zhejiang University Science A",
volume="9",
number="5",
pages="714-719",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071417"
}
%0 Journal Article
%T Research on ethanol synthesis from syngas
%A Jie HE
%A Wen-nan ZHANG
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 5
%P 714-719
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071417
TY - JOUR
T1 - Research on ethanol synthesis from syngas
A1 - Jie HE
A1 - Wen-nan ZHANG
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 5
SP - 714
EP - 719
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071417
Abstract: It is a very fine substitutable energy technology to synthesize ethanol from biomass-derived syngas. This paper summarized the development of preparing ethanol from syngas, and especially elaborated on the research status of catalysts for the process. Based on the relative researches on the reaction mechanism, structure and performance of the catalysts, the optimum design of catalysts with high activity was presented in this review, which set the theoretical and application foundation for the industrial production of ethanol from syngas.
[1] Bian, G.Z., Fan, L., Fu, Y.L., Fujimoto, K., 1998. High temperature calcined K-MoO3/γ-Al2O3 catalysts for mixed alcohols synthesis from syngas: Effects of Mo loadings. Applied Catalysis A: General, 170(2):255-268.
[2] Breman, B.B., Beenackers, A.A.C.M., Schuurman, H.A., Oesterholt, E., 1995. Kinetics of the gas-slurry methanol-higher alcohol synthesis from CO/CO2/H2 over a Cs-Cu/ZnO/A12O3 catalyst, including simultaneous formation of methyl esters and hydrocarbons. Catalysis Today, 24(1-2):5-14.
[3] Hu, J.L., Wang, Y., Cao, C.S., Elliott, D.C., Stevens, D.J., White, J.F., 2007. Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor. Catalysis Today, 120(1):90-95.
[4] Iranmahboob, J., Hill, D.O., Toghiani, H., 2002. K2CO3/ Co-MoS2/clay catalyst for synthesis of alcohol: influence of potassium and cobalt. Applied Catalysis A: General, 231(1-2):99-108.
[5] Iranmahboob, J., Toghiani, H., Hill, D.O., 2003. Dispersion of alkali on the surface of Co-MoS2/clay catalyst: a comparison of K and Cs as a promoter for synthesis of alcohol. Applied Catalysis A: General, 247(2):207-218.
[6] Jiang, M., Bian, G.Z., Fu, Y.L., 1994. Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas. Journal of Catalysis, 146(1):144-154.
[7] Kieffer, R., Fujiwara, M., Udron, L., Souma, Y., 1997. Hydrogenation of CO and CO2 toward methanol, alcohols and hydrocarbons on promoted copper-rare earth oxides catalysts. Catalysis Today, 36(1):15-24.
[8] Koizumi, N., Murai, K., Ozaki, T., Yamada, M., 2004. Development of sulfur tolerant catalysts for the synthesis of high quality transportation fuels. Catalysis Today, 89(4):465-478.
[9] Kulawska, M., Skrzypek, J., 2001. Kinetics of the synthesis of higher aliphatic alcohols from syngas over a modified methanol synthesis catalyst. Chemical Engineering and Processing, 40(1):33-40.
[10] Luo, H.Y., Zhang, W., Zhou, H.W., Huang, S.Y., Lin, P.Z., Ding, Y.J., Lin, L.W., 2001. A study of Rh-Sm-V/SiO2 catalysts for the preparation of C2-oxygenates from syngas. Applied Catalysis A: General, 214(2):161-166.
[11] Ma, X.M., Lin, G.D., Zhang, H.B., 2006. Co-Mo-K sulfide-based catalyst promoted by multiwalled carbon nanotubes for higher alcohol synthesis from syngas. Chinese Journal of Catalysis, 27(11):1019-1027.
[12] McCutchen, M.S., Márquez, M.A., Roberts, G.W., 1996.Alcohol synthesis with Zn/Cr Catalysts in a slurry reactor. Chemical Engineering Science, 51(11):2959-2964.
[13] Nowicki, L., 2005. Kinetics of CO hydrogenation on modified Cu/ZnO catalyst in a slurry reactor. Chemical Engineering and Processing, 44(3):383-391.
[14] Ojeda, M., Granados, M.L., Rojas, S., et al., 2004. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas: Effect of manganese loading. Applied Catalysis A: General, 261(1):47-55.
[15] Rajagopalan, S., Datar, R.P., Lewis, R.S., 2002. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass and Bioenergy, 23(6):487-493.
[16] Roberts, G.W., Márquez, M.A., McCutchen, M.S., 1997. Alcohol synthesis in a high-temperature slurry reactor. Catalysis Today, 36(3):255-263.
[17] Tien-Thao, N., Alamdari, H., Zahedi-Niaki, M.H., Kaliaguine, S., 2006. LaCo1−xCuxO3−δ perovskite catalysts for higher alcohol synthesis. Applied Catalysis A: General, 311(1):204-212.
[18] Tien-Thao, N., Zahedi-Niaki, M.H., Alamdari, H., Kaliaguine, S., 2007a. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors. Applied Catalysis A: General, 326(2):152-163.
[19] Tien-Thao, N., Zahedi-Niaki, M.H., Alamdari, H., Kaliaguine S., 2007b. Effect of alkali additives over nanocrystalline Co-Cu-based perovskites as catalysts for higher-alcohol synthesis. Journal of Catalysis, 245(2):348-357.
[20] Xu, R., Yang, C., Wei, W., Li, W.H., Sun, Y.H., Hu, T.D., 2004. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas. Journal of Molecular Catalysis A: Chemical, 221(1-2):51-58.
[21] Younesi, H., Najafpour, G., Mohameda, A.R., 2005. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 27(2):110-119.
Open peer comments: Debate/Discuss/Question/Opinion
<1>