CLC number: O55; TN3
On-line Access:
Received: 2008-06-27
Revision Accepted: 2008-09-25
Crosschecked: 2008-10-29
Cited: 7
Clicked: 6954
Shuo HUANG, Xiao-dong RUAN, Xin FU, Hua-yong YANG. Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method[J]. Journal of Zhejiang University Science A, 2009, 10(1): 7-16.
@article{title="Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method",
author="Shuo HUANG, Xiao-dong RUAN, Xin FU, Hua-yong YANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="1",
pages="7-16",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820493"
}
%0 Journal Article
%T Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method
%A Shuo HUANG
%A Xiao-dong RUAN
%A Xin FU
%A Hua-yong YANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 1
%P 7-16
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820493
TY - JOUR
T1 - Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method
A1 - Shuo HUANG
A1 - Xiao-dong RUAN
A1 - Xin FU
A1 - Hua-yong YANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 1
SP - 7
EP - 16
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820493
Abstract: The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement. To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method, we developed a new basic equation for the heat source of a Gaussian laser beam. Based on the new basic equation, an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer- or nanometer-scale thickness. Experiments were performed to measure the thermal conductivity of dielectric thin films with submicrometer- or nanometer-scale thickness. The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained. The obtained thermal conductivity of silicon dioxide film is 1.23 W/(m·K), and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10−8 m2·K/W. The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07 W/(m·K) and 3.69×10−8 m2·K/W, respectively. The experimental results are consistent with reported data.
[1] Balkanski, M., Wallis, R.F., Haro, E., 1983. Anharmonic effects in light scattering due to optical phonons in silicon. Physical Review B, 28(4):1928-1934.
[2] Bruschi, P., Piotto, M., Barillaro, G., 2006. Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensors. Sensors and Actuators A: Physical, 132(1):182-187.
[3] Burzo, M.G., Komarov, P.L., Raad, P.E., 2002. Influence of the metallic absorption layer on the quality of thermal conductivity measurements by the transient thermo-reflectance method. Microelectronics Journal, 33(9):697-703.
[4] Burzo, M.G., Komarov, P.L., Raad, P.E., 2003. Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Transactions on Components and Packaging Technologies, 26(1):80-88.
[5] Cahill, D.G., 1998. Heat transport in dielectric thin films and at solid-solid interfaces, In: Tien, C.L., Majumdar, A., Gerner, F. (Eds.), Microscale Energy Transport. Taylor & Francis, p.108-109.
[6] Cahill, D.G., Katiyar, M., Abelson, J.R., 1994. Thermal conductivity of α-Si: H thin films. Physical Review B, 50(9):6077-6081.
[7] Callard, S., Tallarida, G., Borghesi, A., Zanotti, L., 1999. Thermal conductivity of SiO2 films by scanning thermal microscopy. Journal of Non-Crystalline Solids, 245(1-3):203-209.
[8] Carslaw, H.S., Jaeger, J.C., 1959. Conduction of Heat in Solids (2nd Ed.). Oxford University Press, London, p.216.
[9] Chen, J., Engel, J., Chen, N., Liu, C., 2005. A Monolithic Integrated Array of Out-of-plane Hot-wire Flow Sensors and Demonstration of Boundary-layer Flow Imaging. 18th IEEE International Conference on Micro Electro Mechanical Systems, Miami, Florida, USA, p.299-302.
[10] Dominguez, D., Bonvalot, B., Chau, M.T., Suski, J., 1993. Fabrication and characterization of a thermal flow sensor based on porous silicon technology. Journal of Micromechanics and Microengineering, 3(4):247-249.
[11] Dryden, J.R., 1983. The effect of a surface coating on the constriction resistance of a spot on an infinite half plane. Journal of Heat Transfer, 105:408-410.
[12] Gesele, G., Linsmeier, J., Drach, V., Fricke, J., Arens-Fischer, R., 1997. Temperature-dependent thermal conductivity of porous silicon. Journal of Physics D: Applied Physics, 30(21):2911-2916.
[13] Goodson, K.E., Flik, M.I., Su, L.T., Antoniadis, D.A., 1994. Prediction and measurement of thermal conductivity of amorphous dielectric layers. Journal of Heat Transfer, 116(2):317-323.
[14] Govorkov, S., Ruderman, W., Horn, M.W., Goodman, R.B., Rothschild, M., 1997. A new method for measuring thermal conductivity of thin films. Review of Scientific Instruments, 68(10):3828-3834.
[15] Kaltsas, G., Nassiopoulou, A.G., 1999. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sensors and Actuators A: Physical, 76(1-3):133-138.
[16] Kan, P.Y.Y., Finstad, T.G., 2005. Oxidation of macroporous silicon for thick thermal insulation. Materials Science and Engineering B, 118(1-3):289-292.
[17] Kato, R., Hatta I., 2005. Thermal conductivity measurement of thermally-oxidized SiO2 films on a silicon wafer using a thermo-reflectance technique. International Journal of Thermophysics, 26(1):179-190.
[18] Komarov, P.L., Burzo, M.G., Kaytaz, G., Raad, P.E., 2003. Transient thermo-reflectance measurement of the thermal conductivity and interface resistance of metallised natural and isotopically-pure silicon. Microelectronics Journal, 34(12):1115-1118.
[19] Lambropoulos, J.C., Jolly, M.R., Amsden, C.A., Gilman, S.E., Sinicropi, M.J., Diakomihalis, D., 1989. Thermal conductivity of dielectric thin films. Journal of Applied Physics, 66(9):4230-4242.
[20] Lee, S.M., Cahill, D.G., 1997. Heat transport in thin dielectric films. Journal of Applied Physics, 81(6):2590-2595.
[21] Lee, S.M., Cahill, D.G., Allen, T.H., 1995. Thermal conductivity of sputtered oxide films. Physical Review B, 52(1):253-257.
[22] Love, M.S., Anderson, A.C., 1990. Estimate of phonon thermal transport in amorphous materials above 50 K. Physical Review B, 42(3):1845-1847.
[23] Nonnenmacher, M., Wickramasinghe, H.K., 1992. Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics Letters, 61(2):168-170.
[24] Perichon, S., Lysenko, V., Remaki, B., Barbier, D., Champagnon, B., 1999. Measurement of porous silicon thermal conductivity by micro-Raman scattering. Journal of Applied Physics, 86(8):4700-4702.
[25] Perichon, S., Lysenko, V., Roussel, Ph., Remaki, B., Champagnon, B., Barbier, D., Pinard, P., 2000. Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems. Sensors and Actuators A: Physical, 85(1-3):335-339.
[26] Tsu, R., Hernandez, J.G., 1982. Temperature dependence of silicon Raman lines. Applied Physics Letters, 41(11):1016-1018.
[27] Swimm, R.T., 1983. Photoacoustic determination of thin-film thermal properties. Applied Physics Letters, 42(11):955-957.
[28] Zhang, X., Gridgoropoulos, C.P., 1995. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Review of Scientific Instruments, 66(2):1115-1119.
Open peer comments: Debate/Discuss/Question/Opinion
<1>