CLC number: O643
On-line Access: 2012-05-04
Received: 2011-12-19
Revision Accepted: 2012-03-13
Crosschecked: 2012-03-26
Cited: 6
Clicked: 5818
Hong Lei, Ren-feng Nie, Jin-hua Fei, Zhao-yin Hou. Preparation of Cu/ZnO/Al2O3 catalysts in a solvent-free routine for CO hydrogenation[J]. Journal of Zhejiang University Science A, 2012, 13(5): 395-406.
@article{title="Preparation of Cu/ZnO/Al2O3 catalysts in a solvent-free routine for CO hydrogenation",
author="Hong Lei, Ren-feng Nie, Jin-hua Fei, Zhao-yin Hou",
journal="Journal of Zhejiang University Science A",
volume="13",
number="5",
pages="395-406",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1100345"
}
%0 Journal Article
%T Preparation of Cu/ZnO/Al2O3 catalysts in a solvent-free routine for CO hydrogenation
%A Hong Lei
%A Ren-feng Nie
%A Jin-hua Fei
%A Zhao-yin Hou
%J Journal of Zhejiang University SCIENCE A
%V 13
%N 5
%P 395-406
%@ 1673-565X
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1100345
TY - JOUR
T1 - Preparation of Cu/ZnO/Al2O3 catalysts in a solvent-free routine for CO hydrogenation
A1 - Hong Lei
A1 - Ren-feng Nie
A1 - Jin-hua Fei
A1 - Zhao-yin Hou
J0 - Journal of Zhejiang University Science A
VL - 13
IS - 5
SP - 395
EP - 406
%@ 1673-565X
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1100345
Abstract: The synthesis of methanol and dimethyl ether (DME) from CO hydrogenation has been investigated on Cu-based catalysts. A series of cu/ZnO/Al2O3 catalysts were prepared using a solvent-free routine which involved a direct blend of copper/zinc/aluminum salts and citric acid, followed by calcination at 450 °C. The calcination processes were monitored using thermogravimetry differential scanning calorimetry (TG-DSC). Catalysts were further characterized using N2 adsorption, scanning electronic microscopy (SEM), X-ray diffraction (XRD), N2O oxidation followed by H2 titration, and temperature-programmed reduction with H2 (H2-TPR). The reduction processes were also monitored with in-situ XRD. The physicochemical properties of catalysts depended strongly on the types of precursor salts, and catalysts prepared using Al acetate and Cu nitrate as starting materials had a larger surface area, larger exposed metallic copper surface area, and lower reduction temperature. The CO hydrogenation performances of these catalysts were compared and discussed in terms of their structures. Catalysts prepared with copper nitrate, zinc and aluminum acetates exhibited the highest catalytic activity.
[1]Agrell, J., Boutonnet, M., Fierro, J.L.G., 2003. Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways. Applied Catalysis A: General, 253(1):213-223.
[2]Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., Frusteri, F., 2007. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 249(2):185-194.
[3]Avgouropoulos, G., Ioannided, T., 2003. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A: General, 244(1):155-167.
[4]Bae, J.W., Kang, S.H., Lee, Y.J., Jun, K.W., 2009. Synthesis of DME from syngas on the bifunctional Cu-ZnO-Al2O3/ Zr-modified ferrierite: effect of Zr content. Applied Catalysis B: Environmental, 90(3-4):426-435.
[5]Baltes, C., Vukojević, S., Schüth, F., 2008. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. Journal of Catalysis, 258(2):334-344.
[6]Behera, S.K., Barpanda, P., Pratihar, S.K., Bhattacharyya, S., 2004. Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel. Materials Letters, 58(9):1451-1455.
[7]Behrens, M., 2009. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. Journal of Catalysis, 267(1):24-29.
[8]Behrens, M., Kiner, S., Girsgdies, F., Kasatkin, I., Hermerschmitdt, F., Mette, K., Ruland, H., Muhler, M., Schlögl, R., 2011. Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chemical Communications, 47(6):1701-1703.
[9]Boldyrev, V.V., Tkáčová, K., 2000. Mechanochemistry of solids: past, present, and prospects. Journal of Materials Synthesis and Processing, 8(3-4):121-132.
[10]Castricum, H.L., Bakker, H., Poels, E.K., 2001. Oxidation and reduction in copper/zinc oxides by mechanical milling. Materials Science and Engineering: A, 304-306:418-423.
[11]Choi, Y., Futagami, K., Fujitani, T., Nakamura, J., 2001. The role of ZnO in Cu/ZnO methanol synthesis catalysts— morphology effect or active site model. Applied Catalysis A: General, 208(1-2):163-167.
[12]Fan, J.C., Chen, C.Q., Zhao, J., Huang, W., Xie, K.C., 2010. Effect of surfactant on structure and performance of catalysts for DME synthesis in slurry bed. Fuel Processing Technology, 91(4):414-418.
[13]Fei, J.H., Hou, Z.Y., Zhu, B., Lou, H., Zheng, X.M., 2006. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts. Applied Catalysis A: General, 304:49-54.
[14]Fumo, D.A., Morelli, M.R., Segadães, A.M., 1996. Combustion synthesis of calcium aluminates. Materials Research Bulletin, 31(10):1243-1255.
[15]Gao, Z.H., Huang, W., Yin, L.H., Xie, K.C., 2009. Liquid-phase preparation of catalysts used in slurry reactors to synthesize dimethyl ether from syngas: effect of heat-treatment atmosphere. Fuel Processing Technology, 90(12):1442-1446.
[16]Gervasini, A., Bennici, S., 2005. Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR). Applied Catalysis A: General, 281(1-2):199-205.
[17]Grunwaldt, J.D., Molenbroek, A.M., Topsoe, N.Y., Topsoe, H., Clausen, B.C., 2000. In situ investigations of structural changes in Cu/ZnO catalysts. Journal of Catalysis, 194(2):452-460.
[18]Gu, H., Zhu, Y.F., Li, L.Q., 2009. Hydrogen storage properties of Mg-Ni-Cu prepared by hydriding combustion synthesis and mechanical milling (HCSDMM). International Journal of Hydrogen Energy, 34(6):2654-2660.
[19]Gunter, M.M., Ressler, T., Jentoft, R.E., Bems, B., 2001. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy. Journal of Catalysis, 203(1):133-149.
[20]Guo, X.M., Mao, D.S., Lu, G.Z., Wang, S., Wu, G.S., 2010. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Journal of Catalysis, 271(2):178-185.
[21]Haynes, W.M., Lide, D.R., 2011. CRC Handbook of Chemistry and Physics. Chemical Rubber Co., Cleveland, US, p.44-101.
[22]Hong, Z.S., Cao, Y., Deng, J.F., Fan, K.N., 2002. CO2 hydrogenation to methanol over Cu/ZnO/Al2O3 catalysts prepared by a novel gel-network-coprecipitation method. Catalysis Letters, 82(1-2):37-44.
[23]Jin, D.F., Zhu, B., Hou, Z.Y., Fei, J.H., Lou, H., Zheng, X.M., 2007. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts. Fuel, 86(17-18):2707-2713.
[24]Kang, S.H., Bae, J.W., Kim, H.S., Dhar, G.M., Jun, K.W., 2010. Enhanced catalytic performance for dimethyl ether synthesis from syngas with the addition of Zr or Ga on a Cu-ZnO-Al2O3/γ-Al2O3 bifunctional catalyst. Energy Fuels, 24(2):804-810.
[25]Liu, X.M., Lu, G.Q., Yan, Z.F., Beltramini, J., 2003. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Industrial & Engineering Chemistry Research, 42(25):6518-6530.
[26]Liu, X.Y., Wang, A.Q., Li, L., Zhang, T., Mou, C.Y., Lee, J.F., 2011. Structural changes of Au-Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. Journal of Catalysis, 278(2):288-296.
[27]Mao, D.S., Yang, W.M., Xia, J.C., Zhang, B., Song, Q.Y., Chen, Q.L., 2005. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component. Journal of Catalysis, 230(1):140-149.
[28]Qi, G.X., Zheng, X.M., Fei, J.H., Hou, Z.Y., 2001. A novel catalyst for DME synthesis from CO hydrogenation: activity, structure and surface properties. Journal of Molecular Catalysis A: Chemical, 176(1-2):195-203.
[29]Reddy, A.J., Kokila, M.K., Nagabhushana, H., Chakradhar, R.P.S., Shivakumara, C., Rao, J.L., Nagabhushana, B.M., 2011. Structural, optical and EPR studies on ZnO:Cu nanopowder prepared via low temperature solution combustion synthesis. Journal of Alloys and Compounds, 509(17):5349-5355.
[30]Reubroycharoen, P., Vitidsant, T., Yoneyama, Y., Tsubaki, N., 2004. Development of a new low-temperature methanol synthesis process. Catalysis Today, 89(4):447-454.
[31]Ribeiro, N.F.P., Souza, M.M.V.M., Schmal, M., 2008. Combustion synthesis of copper catalysts for selective CO oxidation. Journal of Power Sources, 179(1):329-334.
[32]Semelsberger, T.A., Borup, R.L., Greene, H.L., 2006. Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources, 156(2):497-511.
[33]Teng, L.H., 2008. Attrition resistant catalyst for dimethyl ether synthesis in fluidized-bed reactor. Journal of Zhejiang University-SCIENCE A, 9(9):1288-1295.
[34]Trovarelli, A., Zamar, F., Llorca, J., de Leitenburg, C., Dolcetti, G., Kiss, J.T., 1997. Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling. Journal of Catalysis, 169(2):490-502.
[35]Venugopal, A., Palgunadi, J., Deog, J.K., Joo, O.S., Shin, C.H., 2009. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: the role of modifier. Journal of Molecular Catalysis A: Chemical, 302(1-2):20-27.
[36]Wang, D.S., Han, Y.Z., Tan, Y.S., Tsubaki, N., 2009. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Processing Technology, 90(3):446-451.
[37]Wang, D.Y., Zhou, J., Liu, G.Z., 2009. The microstructure and photoluminescence of Cu-doped ZnO nano-crystal thin films prepared by sol-gel method. Journal of Alloys and Compounds, 487(1-2):545-549.
[38]Wang, L.C., Liu, Y.M., Chen, M., Cao, Y., He, H.Y., Wu, G.S., Dai, W.L., Fan, K.N., 2007, Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis. Journal of Catalysis, 246(1):193-204.
[39]Wang, L.L., Ding, W., Liu, Y.W., Fang, W.P., Yang, Y.Q., 2010. Effect of preparation methods of aluminum emulsions on catalytic on catalytic performance of copper-based catalysts for methanol synthesis from syngas. Journal of Natural Gas Chemistry, 19(5):487-492.
[40]Wen, H., Liu, Y.C., Wei, M.R., 2005. Multidimensional modeling of dimethyl ether (DME) spray combustion in DI diesel engine. Journal of Zhejiang University-SCIENCE A, 6(4):276-282.
[41]Yang, G.H., Tsubaki, N., Shamoto, J., Yoneyama, Y., Zhang, Y., 2010. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society, 132(23):8129-8136.
[42]Yang, R.Q., Yu, X.C., Zhang, Y., Li, W.Z., Tsubaki, N., 2008. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel, 87(4-5):443-450.
[43]Yuan, Z.L., Wang, L.N., Wang, J.H., Xia, S.X., Chen, P., Hou, Z.Y., Zheng, X.M., 2011. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Applied Catalysis B: Environmental, 101(3-4):431-440.
[44]Zhang, J.C., Zhang, H.B., Yang, X.Y., Huang, Z., Cao, W.L., 2011. Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins. Journal of Natural Gas Chemistry, 20(3):266-270.
[45]Zhang, J.R., Gao, L., 2004. Antimony-doped tin oxide nanocrystallites prepared by a combustion process. Materials Letters, 58(22-23):2730-2734.
[46]Zhang, Y.L., Sun, Q., Deng, J.F., Wu, D., 1997. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: preparation and catalytic properties. Applied Catalysis A: General, 158(1-2):105-120.
[47]Zhang, Y.P., Fei, J.H., Yu, Y.M., Zheng, X.M., 2006. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified γ-Al2O3. Energy Conversion and Management, 47(18-19):3360-3367.
Open peer comments: Debate/Discuss/Question/Opinion
<1>