Full Text:   <3414>

CLC number: O646

On-line Access: 2013-07-01

Received: 2013-01-15

Revision Accepted: 2013-04-07

Crosschecked: 2013-06-21

Cited: 2

Clicked: 6977

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.7 P.514-519

http://doi.org/10.1631/jzus.A1300026


Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode*


Author(s):  Xue-ying Qin1,2, Jing-lun Wang1, Dao-ping Tang1, Yong-jin Mai1, Ling-zhi Zhang1

Affiliation(s):  1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; more

Corresponding email(s):   lzzhang@ms.giec.ac.cn

Key Words:  Triethoxysilane, Electrolyte additive, Solid electrolyte interphase, Graphite anode, Lithium-ion batteries (LIBs)


Xue-ying Qin, Jing-lun Wang, Dao-ping Tang, Yong-jin Mai, Ling-zhi Zhang. Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode[J]. Journal of Zhejiang University Science A, 2013, 14(7): 514-519.

@article{title="Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode",
author="Xue-ying Qin, Jing-lun Wang, Dao-ping Tang, Yong-jin Mai, Ling-zhi Zhang",
journal="Journal of Zhejiang University Science A",
volume="14",
number="7",
pages="514-519",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300026"
}

%0 Journal Article
%T Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode
%A Xue-ying Qin
%A Jing-lun Wang
%A Dao-ping Tang
%A Yong-jin Mai
%A Ling-zhi Zhang
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 7
%P 514-519
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300026

TY - JOUR
T1 - Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode
A1 - Xue-ying Qin
A1 - Jing-lun Wang
A1 - Dao-ping Tang
A1 - Yong-jin Mai
A1 - Ling-zhi Zhang
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 7
SP - 514
EP - 519
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300026


Abstract: 
{3-[2-(2-methoxyethoxy) ethoxy]-propyl} triethoxysilane (TESM2) was synthesized and used as an electrolyte additive to improve the performances of lithium-ion batteries (LIBs). The electrochemical properties of the electrolyte (1 mol/L lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):diethylene carbonate (DEC):dimethyl carbonate (DMC), 1:1:1) with different contents of TESM2 were characterized by ionic conductivity measurement, galvanostatic charge/discharge test of graphite/Li half cells, and electrochemical impedance spectroscopy. Both the cycling performances and C-rate capabilities of graphite/Li half cells were significantly improved with an optimized content of 15% TESM2 in the electrolyte. The graphite/Li half cell delivered a very high specific capacity of 370 mAh/g at 0.2C rate without any capacity loss for 60 cycles, and retained a capacity of 292 mAh/g at 2C rate. The solid electrolyte interphase (SEI) film on the surface of the graphite anode was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), indicating that TESM2 was effectively involved in the formation of SEI film on the surface of graphite.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., Heider, U., 2002. On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries. Electrochimica Acta, 47(9):1423-1439. 


[2] Aurbach, D., Gnanaraj, J.S., Geissler, W., Schmidt, M., 2004. Vinylene carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 151(1):A23-A30. 


[3] Contestabile, M., Morselli, M., Paraventi, R., Neat, R.J., 2003. A comparative study on the effect of electrolyte/additives on the performance of ICP383562Li-ion polymer (soft-pack) cells. Journal of Power Sources, 119-121(SI):943-947. 


[4] Ghosh, B.D., Lott, K.F., Ritchie, J.E., 2005. Conductivity dependence of PEG content in an anhydrous proton conducting sol-gel electrolyte. Chemistry of Materials, 17(3):661-669. 


[5] Hao, X., Liu, P., Zhang, Z., Lai, Y., Wang, X., Li, J., Liu, Y., 2010. Tetraethylammonium tetrafluoroborate as additive to improve the performance of LiFePO4/artificial graphite cells. Electrochemical and Solid-State Letters, 13(8):A118-A120. 


[6] Hu, Y.S., Kong, W.H., Wang, Z.X., Li, H., Huang, X., Chen, L.Q., 2004. Effect of morphology and current density on the electrochemical behavior of graphite electrodes in PC-based electrolyte containing VEC additive. Electro-chemical and Solid-State Letters, 7(11):A442-A446. 


[7] Li, L.L., Wang, B., Liu, L.L., Wu, Y.P., van Ree, T., Thavhiwa, K.A., 2011. Methyl phenyl bis-methoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries. Electrochimica Acta, 56(13):4858-4864. 


[8] Markovsky, B., Nimberger, A., Talyosef, Y., Rodkin, A., Belostotskii, A.M., Salitra, G., Aurbach, D., Kim, H.J., 2004. On the influence of additives in electrolyte solutions on the electrochemical behavior of carbon/LiCoO2 cells at elevated temperature. Journal of Power Sources, 136(2):296-302. 


[9] Ryu, Y.G., Lee, S.S., Mah, S.K., Lee, D.J., Kwon, K., Hwang, S.S., Doo, S.G., 2008. Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives. Journal of the Electrochemical Society, 155(8):A583-A589. 


[10] Sakamoto, J.S., Wudlb, F., Dunn, B., 2001. Passivating lithium electrodes with trimethylsilylacetylene. Solid State Ionics, 144(3-4):295-299. 


[11] Schroeder, G., Gierczyk, B., Waszak, D., Kopczyk, M., Walkowiak, M., 2006. Vinyl tris-2-methoxyethoxy silane—A new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochemistry Communications, 8(4):523-527. 


[12] Schroeder, G., Gierczyk, B., Waszak, D., Walkowiak, M., 2006. Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte. Electrochemistry Communications, 8(10):1583-1587. 


[13] Song, S.W., Baek, S.W., 2009. Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries. Electrochemical and Solid-State Letters, 12(2):A23-A27. 


[14] Walkowiak, M., Waszak, D., Schroeder, G., Gierczyk, B., 2008. Polyether-functionalized disiloxanes as new film-forming electrolyte additive for Li-ion cells with graphitic anodes. Electrochemistry Communications, 10(11):1676-1679. 


[15] Walkowiak, M., Waszak, D., Schroeder, G., Gierczyk, B., 2010. Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent. Journal of Solid State Electrochemistry, 14(12):2213-2218. 


[16] Xia, Q., Wang, B., Wu, Y.P., Luo, H.J., Zhao, S.Y., van Ree, T., 2008. Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. Journal of Power Sources, 180(1):602-606. 


[17] Xu, K., Zhang, S.S., Jow, T.R., Xu, W., Angell, C.A., 2002. LiBOB as salt for lithium-ion batteries—A possible solution for high temperature operation. Electrochemical and Solid-State Letters, 5(1):A26-A29. 


[18] Zhang, S.S., 2006. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 162(2):1379-1394. 


[19] Zhang, H.P., Xia, Q., Wang, B., Yang, L.C., Wu, Y.P., Sun, D.L., Gan, C.L., Luo, H.J., Bebeda, A.W., van Ree, T., 2009. Vinyl-tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries. Electrochemistry Communications, 11(3):526-529. 


[20] Zhang, L.Z., Zhang, Z.C., Harring, S., Straughan, M., Butorac, R., Chen, Z.H., Lyons, L., Amine, K., West, R., 2008. Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. Journal of Materials Chemistry, 18(31):3713-3717. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE