Full Text:   <3335>

CLC number: TM619

On-line Access: 2013-12-03

Received: 2013-06-18

Revision Accepted: 2013-09-12

Crosschecked: 2013-11-07

Cited: 15

Clicked: 4476

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.12 P.890-897


A new energy harvester using a piezoelectric and suspension electromagnetic mechanism*

Author(s):  Xiao-biao Shan1, Shi-wei Guan1, Zhang-shi Liu2, Zhen-long Xu1, Tao Xie1

Affiliation(s):  1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; more

Corresponding email(s):   xietao@hit.edu.cn

Key Words:  Hybrid energy harvesting, Piezoelectric, Electromagnetic, Environmental vibration

Xiao-biao Shan, Shi-wei Guan, Zhang-shi Liu, Zhen-long Xu, Tao Xie. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University Science A, 2013, 14(12): 890-897.

@article{title="A new energy harvester using a piezoelectric and suspension electromagnetic mechanism",
author="Xiao-biao Shan, Shi-wei Guan, Zhang-shi Liu, Zhen-long Xu, Tao Xie",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A new energy harvester using a piezoelectric and suspension electromagnetic mechanism
%A Xiao-biao Shan
%A Shi-wei Guan
%A Zhang-shi Liu
%A Zhen-long Xu
%A Tao Xie
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 12
%P 890-897
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300210

T1 - A new energy harvester using a piezoelectric and suspension electromagnetic mechanism
A1 - Xiao-biao Shan
A1 - Shi-wei Guan
A1 - Zhang-shi Liu
A1 - Zhen-long Xu
A1 - Tao Xie
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 12
SP - 890
EP - 897
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300210

This study presents a new design of a piezoelectric-electromagnetic energy harvester to enlarge the frequency bandwidth and obtain a larger energy output. This harvester consists of a primary piezoelectric energy harvesting device, in which a suspension electromagnetic component is added. A coupling mathematical model of the two independent energy harvesting techniques was established. Numerical results show that the piezoelectric-electromagnetic energy harvester has three times the bandwidth and higher power output in comparison with the corresponding stand-alone, single harvesting mode devices. The finite element models of the piezoelectric and electromagnetic systems were developed, respectively. A finite element analysis was performed. Experiments were carried out to verify the validity of the numerical simulation and the finite element results. It shows that the power output and the peak frequency obtained from the numerical analysis and the finite element simulation are in good agreement with the experimental results. This study provides a promising method to broaden the frequency bandwidth and increase the energy harvesting power output for energy harvesters.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Beeby, S.P., Tudor, M.J., White, N.M., 2006. Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17(12):R175-R195. 

[2] Challa, V.R., Prasad, M.G., Fisher, F.T., 2009. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 18(9):095029

[3] Gonsalez, C.G., Franco, V.R., Brennan, M.J., 2010. Energy Harvesting Using Piezoelectric and Electromagnetic Transducers. , 9th Brazilian Conference on Dynamics, Control and Their Applications, Serra Negra, Brazil, 1166-1171. :1166-1171. 

[4] MacCurdy, R.B., Reissman, T., Garcia, E., 2008. Energy Management of Multi-component Power Harvesting Systems, Proc. SPIE 6928, Active and Passive Smart Structures and Integrated Systems, San Diego, California, USA, 692809:692809

[5] Mann, B.P., Sims, N.D., 2009. Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration, 319(1-2):515-530. 

[6] Mann, B.P., Owens, B.A., 2010. Investigations of a nonlinear energy harvester with a bistable potential well. Journal of Sound and Vibration, 329(9):1215-1226. 

[7] Nayfeh, A.H., Balachandran, B., 2008. Applied Nonlinear Dynamics, Wiley-VCH Verlag GmbH & Co. KGaA,:

[8] Roundy, S., Wright, P.K., Rabaey, J.M., 2004. Energy Scavenging for Wireless Sensor Networks: with Special Focus on Vibrations, Springer, Kluwer Academic Publishers,:

[9] Shen, D., Park, J.H., Ajitsaria, J., Choe, S.Y., Wikle, H.C., Kim, D.J., 2008. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. Journal of Micromechanics and Microengineering, 18(5):055017

[10] Stephen, N.G., 2006. On energy harvesting from ambient vibration. Journal of Sound and Vibration, 293(1-2):409-425. 

[11] Tadesse, Y., Zhang, S.J., Priya, S., 2009. Multimodal energy harvesting system: piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, 20(5):625-632. 

[12] Torah, R., Glynne-Jones, P., Tudor, M., O'Donnell, T., Roy, S., Beeby, S., 2008. Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology, 19(12):125202

[13] Wacharasindhu, T., Kwon, J.W., 2008. A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. Journal of Micromechanics and Microengineering, 18(10):104016

[14] Wang, H.Y., Shan, X.B., Xie, T., 2012. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system. Journal of Zhejiang Universit-SCIENCE A (Applied Physics & Engineering), 13(7):526-537. 

[15] Wang, P.H., Tao, K., Yang, Z.Q., Ding, G.F., 2013. Resin-bonded NdFeB micromagnets for integration into electromagnetic vibration energy harvesters. Journal of Zhejiang University-SCIENCE C (Computer & Electronics), 14(4):283-287. 

[16] Williams, C.B., Yates, R.B., 1996. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1-3):8-11. 

[17] Wischke, M., Masur, M., Woias, P., 2009. A Hybrid Generator for Vibration Energy Harvesting Applications. , Solid-State Sensors, Actuators and Microsystems Conference, IEEE, Denver, Colorado, USA, 521-524. :521-524. 

[18] Yang, B., Kee, W.L., Lim, S.P., Lee, C.K., 2010. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9(2):023002

[19] Yang, Y., Tang, L., 2009. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures, 20(18):2223-2235. 

[20] Yuan, J.B., Xie, T., Shan, X.B., Chen, W.S., 2009. Resonant frequencies of a piezoelectric drum transducer. Journal of Zhejiang University-SCIENCE A, 10(9):1313-1319. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE