Full Text:   <3044>

Summary:  <2113>

CLC number: TM619; TN384

On-line Access: 2014-06-04

Received: 2014-05-04

Revision Accepted: 2014-07-24

Crosschecked: 2014-08-25

Cited: 10

Clicked: 9257

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.9 P.711-722


A 2DOF hybid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms*

Author(s):  Hong-yan Wang1,2, Li-hua Tang3, Yuan Guo1, Xiao-biao Shan2, Tao Xie2

Affiliation(s):  1. College of Computer and Control Engineering, Qiqihar University, Qiqihar 161006, China; more

Corresponding email(s):   wanghongyan1993@163.com

Key Words:  Vibration, Two-degree-of-freedom (2DOF), Hybrid piezoelectric-electromagnetic conversion, Energy harvesting

Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University Science A, 2014, 15(9): 711-722.

@article{title="A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms",
author="Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms
%A Hong-yan Wang
%A Li-hua Tang
%A Yuan Guo
%A Xiao-biao Shan
%A Tao Xie
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 9
%P 711-722
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400124

T1 - A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms
A1 - Hong-yan Wang
A1 - Li-hua Tang
A1 - Yuan Guo
A1 - Xiao-biao Shan
A1 - Tao Xie
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 9
SP - 711
EP - 722
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400124

This paper presents a two-degree-of-freedom (2DOF) hybrid piezoelectric-electromagnetic energy harvester (P-EMEH). Such a 2DOF system is designed to achieve two close resonant frequencies. The combined piezoelectric-electromagnetic conversion mechanism is exploited to further improve the total power output of the system in comparison to a stand-alone piezoelectric or electromagnetic conversion mechanism. First, a mathematical model for the 2DOF hybrid P-EMEH is established. Subsequently, the maximal power output of the 2DOF hybrid P-EMEH is compared both experimentally and theoretically with those from the 1DOF piezoelectric energy harvester (PEH), 1DOF electromagnetic energy harvester (EMEH), 2DOF PEH, and 2DOF EMEH. Based on the validated mathematical model, the effect of the effective electromechanical coupling coefficients (EMCC) on the maximal power outputs from various harvester configurations is analyzed. The results indicate that for the 2DOF hybrid P-EMEH, although the increase of the power output from one electromechanical transducer will lead to the decrease of the power output from the other, the overall performance of the system is improved in weak and medium coupling regimes by increasing electromechanical coupling. In weak and medium coupling scenarios, the hybrid energy harvester configuration is advantageous over conventional 1DOF or 2DOF harvester configurations with a stand-alone conversion mechanism.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Aldraihem, O., Baz, A., 2011. Energy harvester with dynamic magnifier. Journal of Intelligent Material Systems and Structures, 22(6):521-530. 

[2] Arafa, M., Akl, W., Aladwani, A., 2011. Experimental implementation of a cantilevered piezoelectric energy harvester with a dynamic magnifier. , Proceedings of SPIE, Active and Passive Smart Structures and Integrated Systems, San Diego, USA, 79770Q:79770Q

[3] Challa, V.R., Prasad, M.G., Fisher, F.T., 2009. Coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 18(9):095029

[4] Challa, V.R., Cheng, S., Arnold, D.P., 2013. The role of coupling strength in the performance of electrodynamic vibrational energy harvesters. Smart Materials and Structures, 22(2):025005

[5] Dutoit, N.E., Wardle, B.L., Kim, S.G., 2005. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated Ferroelectrics, 71(1):121-160. 

[6] Elvin, N.G., Elvin, A.A., 2011. An experimentally validated electromagnetic energy harvester. Journal of Sound and Vibration, 330(10):2314-2324. 

[7] Guyomar, D., Badel, A., Lefeuvre, E., 2005. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Transctions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(4):584-595. 

[8] Harne, R.L., 2012. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. The Journal of the Acoustical Society of America, 132(1):162-172. 

[9] Jung, H.J., Kim, I.H., Koo, J.H., 2011. A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting. Smart Structures and Systems, 7(5):379-392. 

[10] Khaligh, A., Zeng, P., Wu, X., 2008. A hybrid energy scavenging topology for human-powered mobile electronics. , Proceedings-34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, USA, 448-453. :448-453. 

[11] Kim, H., Kim, S.M., Son, H., 2012. Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energy & Environmental Science, 5(10):8932-8936. 

[12] Lallart, M., Pruvost, S., Guyomar, D., 2011. Electrostatic energy harvesting enhancement using variable equivalent permittivity. Physics Letters A, 375(45):3921-3924. 

[13] Liao, Y.B., Sodano, H.A., 2008. Model of a single mode energy harvester and properties for optimal power generation. Smart Materials and Structures, 17(6):065026

[14] Lumentut, M.F., Howard, I.M., 2011. Analytical modeling of self-powered electromechanical piezoelectric bimorph beams with multidirectional excitation. International Journal of Smart and Nano Materials, 2(3):134-175. 

[15] Roundy, S., Wright, P.K., Rabaey, J., 2003. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11):1131-1144. 

[16] Shan, X.B., Guan, S.W., Liu, Z.S., 2013. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. Journal of Zhejiang University-SCIENCE A (Applying Physics & Engineering), 14(12):890-897. 

[17] Shu, Y.C., Lien, I.C., 2006. Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6):1499-1512. 

[18] Tadesse, Y., Zhang, S., Priya, S., 2009. Multimodal energy harvesting system: piezoelectric and electromagnetic. Journal of Intelligent Material Systems and Structures, 20(5):625-632. 

[19] Tang, L.H., Yang, Y.W., 2012. A multiple-degree-of-freedom piezoelectric energy harvesting model. Journal of Intelligent Material Systems and Structures, 23(14):1631-1647. 

[20] Tang, L.H., Yang, Y.W., Soh, C.K., 2013. Broadband vibration energy harvesting techniques.  Advances in Energy Harvesting Methods. Springer,New York, USA :17-61. 

[21] Wacharasindhu, T., Kwon, J.W., 2008. A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion. Journal of Micromechanics and Microengineering, 18(10):104016

[22] Wang, H.Y., Shan, X.B., Xie, T., 2012. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system. Journal of Zhejiang University-SCIENCE A (Applying Physics & Engineering), 13(7):526-537. 

[23] Wang, H.Y., Tang, L.H., Shan, X.B., 2014. Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes. Smart Structures and Systems, 14(2):247-266. 

[24] Williams, C.B., Yates, R.B., 1996. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1-3):8-11. 

[25] Yang, B., Lee, C., Kee, W.L., 2010. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. Journal of Micro/Nanolithography, MEMS, and MOEMS, 9(2):023002

[26] Yang, Y.W., Tang, L.H., Li, H.Y., 2009. Vibration energy harvesting using macro-fiber composite. Smart Materials and Structures, 18(11):115025

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE