Full Text:   <2451>

Summary:  <2041>

CLC number: TH137

On-line Access: 2015-05-04

Received: 2014-10-23

Revision Accepted: 2015-04-17

Crosschecked: 2015-04-20

Cited: 3

Clicked: 4587

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xu Yang

http://orcid.org/0000-0001-9462-0507

Guo-fang Gong

http://orcid.org/0000-0001-9553-8783

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.5 P.418-426

http://doi.org/10.1631/jzus.A1400323


A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction


Author(s):  Xu Yang, Guo-fang Gong, Hua-yong Yang, Lian-hui Jia, Qun-wei Ying

Affiliation(s):  The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   gfgong@zju.edu.cn

Key Words:  Shield cutterhead, Driving system, Load characteristic forecast, Cutterhead mode control strategy (CMCS)


Share this article to: More <<< Previous Article|

Xu Yang, Guo-fang Gong, Hua-yong Yang, Lian-hui Jia, Qun-wei Ying. A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction[J]. Journal of Zhejiang University Science A, 2015, 16(5): 418-426.

@article{title="A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction",
author="Xu Yang, Guo-fang Gong, Hua-yong Yang, Lian-hui Jia, Qun-wei Ying",
journal="Journal of Zhejiang University Science A",
volume="16",
number="5",
pages="418-426",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400323"
}

%0 Journal Article
%T A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction
%A Xu Yang
%A Guo-fang Gong
%A Hua-yong Yang
%A Lian-hui Jia
%A Qun-wei Ying
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 5
%P 418-426
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400323

TY - JOUR
T1 - A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction
A1 - Xu Yang
A1 - Guo-fang Gong
A1 - Hua-yong Yang
A1 - Lian-hui Jia
A1 - Qun-wei Ying
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 5
SP - 418
EP - 426
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400323


Abstract: 
In this paper, we propose a shield cutterhead load characteristic forecast method and apply it to optimize the efficiency of the cutterhead driving system. For the forecast method, wavelet transform is used for preprocessing, and grey model GM(1,1) for forecasting. The performance of the wavelet-based GM(1,1) (WGM(1,1)) is illustrated through field data based load characteristic prediction and analysis. A cutterhead mode control strategy (CMCS) is presented based on the WGM(1,1). The CMCS can not only provide operators with some useful operating information but also optimize the stator winding connection. Finally, the CMCS is tested on a cutterhead driving experimental platform. Results show that the optimized stator winding connection can improve the system efficiency through reducing the energy consumption under part-load conditions. Therefore, the energy-saving CMCS is useful and practical.

This paper is about the load characteristic prediction and its application to the control optimization of cutterhead driving system in shield tunneling machines. The paper is in a good shape with theory, experiment and simulation.

一种基于载荷特征预测的盾构机刀盘节能驱动技术

目的:实现盾构机刀盘载荷特征预测,并将预测结果应用于刀盘驱动系统的能耗优化控制。
方法:1.采用基于小波变换的灰色模型WGM(1,1)对盾构机刀盘载荷特征进行预测;2.基于该预测方法,设计刀盘模式控制策略(CMCS),实现刀盘驱动系统的能耗优化控制。
结论:1.相对传统灰色模型GM(1,1),基于小波变换的灰色模型WGM(1,1)可更加精确地预测盾构机刀盘载荷特征,是一种更加有效的载荷特征预测方法;2.改变电动机定子接线方式是一种简单有效的提升刀盘系统效率的方法;3.刀盘模式控制策略不仅可以为操作者提供操作建议,而且可以通过优化电机定子接线方式,降低刀盘在低载荷下的能量消耗,提升刀盘驱动系统的效率。

关键词:盾构机刀盘;驱动系统;载荷特征预测;刀盘模式控制策略(CMCS)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen, C.I., Huang, S.J., 2013. The necessary and sufficient condition for GM (1,1) grey prediction model. Applied Mathematics and Computation, 219(11):6152-6162.

[2]Donoho, D.L., Johnstone I.M., 1994. Threshold selection for wavelet shrinkage of noisy data. Proceedings of the 16th Annual International Conference Engineering in Medicine and Biology Society, 1:A24-A25.

[3]Deng, J.L., 1989. Introduction to grey system theory. The Journal of Grey System, 1(1):1-24.

[4]Ferreira, F.J.T.E., 2009. Strategies to Improve the Performance of Three-phase Induction Motor Driven Systems. PhD Thesis, University of Coimbra, Portugal.

[5]Ferreira, F.J.T.E., de Almeida, A.T., 2006. Method for in-field evaluation of the stator winding connection of three-phase induction motors to maximize efficiency and power factor. IEEE Transactions on Energy Conversion, 21(2):370-379.

[6]Ferreira, F.J.T.E., de Almeida, A.T., Ge, B.M., et al., 2005. Automatic change of the stator-winding connection of variable-load three-phase induction motors to improve the efficiency and power factor. IEEE International Conference on Industrial Technology, Hong Kong, China.

[7]He, C., Feng, K., Fang, Y., et al., 2012. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(11):858-869.

[8]Hsu, C.C., Chen, C.Y., 2003. Applications of improved grey prediction model for power demand forecasting. Energy Conversion and Management, 44(14):2241-2249.

[9]Li, H., Manjunath, B.S., Mitra, S.K., 1995. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3):235-245.

[10]Lin, C.S., Liou, F.M., Huang, C.P., 2011. Grey forecasting model for CO2 emissions: a Taiwan study. Applied Energy, 88(11):3816-3820.

[11]Liu, X.Y., Yuan, D.J., 2014. An in-situ slurry fracturing test for slurry shield tunneling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(7):465-481.

[12]Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674-693.

[13]Postalcioglu, S., Erkan, K., Bolat, E.D., 2005. Comparison of Kalman filter and wavelet filter for denoising. International Conference on Neural Networks and Brain, 2:951-954.

[14]Shi, H., Yang, H.Y., Gong, G.F., et al., 2014. Energy saving of cutterhead hydraulic drive system of shield tunneling machine. Automation in Construction, 37:11-21.

[15]Song, K.Z., Sun, M., 2007. Analysis of influencing factors of shield tunneling performance in complex rock strata. Chinese Journal of Rock Mechanics and Engineering, 26(10):2092-2096 (in Chinese).

[16]Wang, S.N., Pan, Y.H., Yang, J.G., 2007. Study on spillover effect of copper futures between LME and SHFE using wavelet multiresolution analysis. Journal of Zhejiang University-SCIENCE A, 8(8):1290-1295.

[17]Xing, T., Yang, H.Y., Gong, G.F., 2009. Drive technique of pumps optimized combination hydraulic system in shield tunneling machine. Journal of Zhejiang University (Engineering Science), 43(3):511-516 (in Chinese).

[18]Xing, T., Yang, H.Y., Gong, G.F., 2010. Efficiency comparative study for hydraulic drive system of cutter head in shield tunneling machine. Journal of Zhejiang University (Engineering Science), 44(2):358-363, 372 (in Chinese).

[19]Yang, H.Y., Xing, T., Gong, G.F., 2010. Variable speed pump control system for driving cutterhead of test shield tunneling machine. Journal of Zhejiang University (Engineering Science), 44(2):373-378 (in Chinese).

[20]Zhang, Q., 2012. Mechanics Characteristic Analysis and Modeling for Load of Shield Machine during Tunneling. PhD Thesis, Tianjin University, China (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE