CLC number: O32
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-04-15
Cited: 2
Clicked: 14151
Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University Science A, 2016, 17(5): 335-352.
@article{title="Typical dielectric elastomer structures: dynamics and application in structural vibration control",
author="Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="5",
pages="335-352",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500345"
}
%0 Journal Article
%T Typical dielectric elastomer structures: dynamics and application in structural vibration control
%A Zhi-long Huang
%A Xiao-ling Jin
%A Rong-hua Ruan
%A Wei-qiu Zhu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 5
%P 335-352
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500345
TY - JOUR
T1 - Typical dielectric elastomer structures: dynamics and application in structural vibration control
A1 - Zhi-long Huang
A1 - Xiao-ling Jin
A1 - Rong-hua Ruan
A1 - Wei-qiu Zhu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 5
SP - 335
EP - 352
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500345
Abstract: In recent years, dielectric elastomer (DE) structures have received great attention in various fields of engineering, such as artificial muscle, soft robot, resonator, and structural vibration control, due to its prominent advantages. In the present paper, the theoretical and experimental research into the dynamical behavior of DE structures and their application for vibration control is reviewed. In the theoretical research into dynamical behavior, from a mechanics viewpoint, DE structures are usually categorized into four types, i.e., spherical, rectangular, tubular, and circular. For each type of DE structure, the mathematical description is given and the dynamical behavior, such as the resonant property, jump, and bifurcation, is summarized. Moreover, the work on dynamical experiments is briefly outlined. In the application for vibration control, stack-type and tubular-type DE structures usually used as actuators are surveyed. The established control algorithms for the controlled systems using DE actuators are described. The challenges for the research into the dynamics of DE structure and its application for vibration control and some promising theories which may be applied for the research are pointed out.
The authors here presented a review with some analysis on the theory, dynamical behavior, experiment and applications for structural control system of spherical, rectangular, tubular, and circular dielectric elastomer structures. They further described some problems and proposed potential solutions. This is a timely paper for research in the control of dielectric elastomer structures which has received extensive research attention in the recent past.
[1]Ashley, S., 2003. Artificial muscles. Scientific American, p.52-59.
[2]Bauer, S., Paajanen, M., 2006. Electromechanical characterization and measurement protocol for dielectric elastomer actuators. Proc. SPIE 6168, Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 61682K.
[3]Berardi, U., 2010. Dielectric electroactive polymer applications in buildings. Intelligent Buildings International, 2:167-178.
[4]Berardi, U., 2013. Modelling and testing of a dielectric electro-active polymer actuator for active vibration control. Journal of Mechanical Science and Technology, 27(1):1-7.
[5]Brochu, P., Pei, Q., 2010. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 31(1):10-36.
[6]Carpi, F., Rossi, D.D., 2004. Dielectric elastomer cylindrical actuators: electromechanical modeling and experimental evaluation. Materials Science and Engineering: C, 24(4):555-562.
[7]Carpi, F., Migliore, A., Serra, G., et al., 2005. Helical dielectric elastomer actuators. Smart Materials and Structures, 14(6):1210.
[8]Carpi, F., Salaris, C., de Rosi, D., 2007. Folded dielectric elastomer actuators. Smart Materials and Structures, 16:S300.
[9]Carpi, F., Rossi, D.D., Kornbluh, R., et al., 2008. Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, UK.
[10]Chakravarty, U.E., 2014. On the resonance frequencies of a membrane of a dielectric elastomer. Mechanics Research Communications, 55:72-76.
[11]Diaz-Calleja, R., Sanchis, M.J., Riande, E., 2009. Effect of an electric field on the bifurcation of a biaxially stretched incompressible slab rubber. European Physical Journal E–Soft Matter, 30:417-426.
[12]Dubois, P., Rosset, S., Niklaus, M., et al., 2008. Voltage control of the resonance frequency of dielectric electroactive polymer membranes. Journal of Microelectromechanical Systems, 17(5):1072-1081.
[13]Fleming, W.H., Rishel, R.W., 1975. Deterministic and Stochastic Optimal Control. Springer, New York, USA.
[14]Fox, J.W., Goulbourne, N.C., 2008. On the dynamic electromechanical loading of dielectric elastomer membranes. Journal of the Mechanics and Physics of Solids, 56(8):2669-2686.
[15]Fox, J.W., Goulbourne, N.C., 2009. Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes. Journal of the Mechanics and Physics of Solids, 57(8):1417-1435.
[16]Giousouf, M., Kovacs, G., 2013. Dielectric elastomer actuators used for pneumatic valve technology. Smart Materials and Structures, 22(10):104010.
[17]Herold, S., Kaal, W., Melz, T., 2011. Dielectric elastomers for active vibration control applications. Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 79761I.
[18]Herold, S., Kaal, W., Melz, T., 2012. Novel dielectric stack actuators for dynamic applications. Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stone Mountain, Georgia, USA, p.455-463.
[19]Heydt, R., Kornbluh, R., Eckerle, J., et al., 2006. Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers. Proc. SPIE 6168, Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 61681M.
[20]Hong, W., 2011. Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids, 59(3):637-650.
[21]Iskandarani, Y., Karimi, H.R., 2013. Dynamic characterization for the dielectric electroactive polymer fundamental sheet. The International Journal of Advanced Manufacturing Technology, 66(9-12):1457-1466.
[22]Jones, R.W., Sarban, R., 2012. Inverse grey-box model-based control of a dielectric elastomer actuator. Smart Materials and Structures, 21(7):075019.
[23]Jones, R.W., Sarban, R., 2013. Grey-box model-based vibration isolation using a dielectric elastomer actuator. Asian Journal of Control, 15(6):1599-1612.
[24]Kaal, W., Herold, S., 2011. Electroactive polymer actuators in dynamic applications. IEEE/ASME Transactions on Mechatronics, 16(1):24-32.
[25]Kaal, W., Herold, S., 2015. Active elastomer components based on dielectric elastomers. Gummi Fasern Kunststoffe, 68:412-415.
[26]Karsten, R., Schlaak, H.F., 2012. Adaptive absorber based on dielectric elastomer stack actuator with variable stiffness. Proc. SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 834020.
[27]Karsten, R., Lotz, P., Schlaak, H.F., 2011. Active suspension with multilayer dielectric elastomer actuator. Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 79762M.
[28]Karsten, R., Flittner, K., Haus, H., et al., 2013. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation. Proc. SPIE 8687, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 86870Y.
[29]Kovacs, G., Duering, L., Michel, S., et al., 2009. Stacked dielectric elastomer actuator for tensile force transmission. Sensors and Actuators A: Physical, 155(2):299-307.
[30]Li, T., Qu, S., Yang, W., 2012. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures, 49(26):3754-3761.
[31]Liang, X., Cai, S., 2015. Shape bifurcation of a spherical dielectric elastomer balloon under the actions of internal pressure and electric voltage. Journal of Applied Mechanics, 82(10):101002.
[32]Liu, L., Chen, H., Sheng, J., et al., 2014. Experimental study on the dynamic response of in-plane deformation of dielectric elastomer under alternating electric load. Smart Materials and Structures, 23(2):025037.
[33]Lu, T., An, L., Li, J., et al., 2015. Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube. Journal of the Mechanics and Physics of Solids, 85:160-175.
[34]McKay, T., O’Brien, B., Calius, E., et al., 2010. An integrated, selfpriming dielectric elastomer generator. Applied Physics Letters, 97(6):062911.
[35]Mockensturm, E.M., Goulbourne, N., 2006. Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics, 41(3):388-395.
[36]O’Halloran, A., O’Malley, F., McHugh, P., 2008. A review on dielectric elastomer actuators, technology, applications, and challenges. Journal of Applied Physics, 104(7):071101.
[37]Papaspiridis, F.G., Antoniadis, I.A., 2008. Dielectric elastomer actuators as elements of active vibration control systems. Advances in Science and Technology, 61:103-111.
[38]Park, H.S., Suo, Z., Zhou, J., et al., 2012. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. International Journal of Solids and Structures, 49(15-16):2187-2194.
[39]Park, H.S., Wang, Q., Zhao, X., et al., 2013. Electromechanical instability on dielectric polymer surface: modeling and experiment. Computer Methods in Applied Mechanics and Engineering, 260:40-49.
[40]Pei, Q., Rosenthal, M., Stanford, S., et al., 2004. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Materials and Structures, 13(5):N86-N92.
[41]Pelrine, R., Kornbluh, R., 2008. Variable stiffness mode dielectric elastomer devices. Advances in Science and Technology, 61:192-201.
[42]Pelrine, R., Kornbluh, R., Joseph, J., 1998. Electrostriction of polymer dielectric with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 64(1):77-85.
[43]Pelrine, R., Kornbluh, R., Pei, Q., et al., 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454):836-839.
[44]Pelrine, R., Kornbluh, R., Pei, Q., et al., 2002. Dielectric elastomer artificial muscle actuators: towards biomimetric motion. Proc. SPIE 4695, Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, p.126-137.
[45]Sarban, R., Jones, R.W., 2010. Active vibration control using DEAP actuators. Proceedings of SPIE, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 76422E.
[46]Sarban, R., Jones, R.W., 2012. Physical model-based active vibration control using a dielectric elastomer actuator. Journal of Intelligent Material Systems and Structures, 23(4):473-483.
[47]Sarban, R., Mace, B.R., Rustighi, E., et al., 2009. Dielectric electro-active polymers in active vibration isolation. 20th International Conference on Adaptive Structures and Technologies, Hong Kong, China.
[48]Sarban, R., Jones, R.W., Mace, B., et al., 2010. Active vibration control of periodic disturbances using a DEAP damper. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, No. 76422Q.
[49]Schlaak, H., Jungmann, M., Matysek, M., et al., 2005. Novel multilayer electrostatic solid-state actuators with elastic dielectric. Proc. SPIE 5759, Smart Structures and Materials: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, p.121-133.
[50]Sheng, J., Chen, H., Li, B., et al., 2014. Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Materials and Structures, 23(4):045010.
[51]Simo, J.C., Taylor, R.L., Pister, K.S., 1985. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51(1-3):177-208.
[52]Sommer-Larsen, P., Hooker, J.C., Kofod, G., et al., 2001. Response of dielectric elastomer actuators. Proc. SPIE 4329, Smart Structures and Materials: Electroactive Polymer Actuators and Devices, Newport Beach, CA, USA, p.157-163.
[53]Son, S., Goulbourne, N.C., 2009. Finite deformations of tubular dielectric elastomer sensors. Journal of Intelligent Material Systems and Structures, 20(18):2187-2199.
[54]Son, S., Goulbourne, N.C., 2010. Dynamic response of tubular dielectric elastomer transducers. International Journal of Solids and Structures, 47(20):2672-2679.
[55]Wahab, A.M., Rustighi, E., 2015. Dynamics characterizations of dielectric electro-active polymer pull actuator for vibration control. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 9:192-200.
[56]Xie, Y.X., Liu, J.C., Fu, Y.B., 2016. Bifurcation of a dielectric elastomer balloon under pressurized inflation and electric actuation. International Journal of Solids and Structures, 78-79:182-188.
[57]Xu, B.X., Mueller, R., Theis, A., et al., 2012. Dynamic analysis of dielectric elastomer actuators. Applied Physics Letters, 100(11):112903.
[58]Yong, H., He, X., Zhou, Y., 2011. Dynamics of a thick-walled dielectric elastomer spherical shell. International Journal of Engineering Science, 49(8):792-800.
[59]Yong, J.M., Zhou, X.Y., 1999. Stochastic Control, Hamiltonian Systems and HJB Equations. Springer, New York, USA.
[60]York, A., Dunn, J., Seelecke, S., 2010. Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electro-active polymer actuators. Smart Materials and Structures, 19(9):094014.
[61]Zhang, J., Chen, H., Sheng, J., et al., 2014. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load. Applied Physics A, 116(1):59-67.
[62]Zhao, X., Wang, Q., 2014. Harnessing large deformation and instabilities of soft dielectrics: theory, experiment, and application. Applied Physics Reviews, 1(2):021304.
[63]Zhou, J., Jiang, L., Khayat, R.E., 2014a. Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints. Smart Materials and Structures, 23(4):045028.
[64]Zhou, J., Jiang, L., Khayat, R.E., 2014b. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator. Journal of Applied Physics, 115(12):124106.
[65]Zhu, J., Cai, S., Suo, Z., 2010a. Nonlinear oscillation of a dielectric elastomer balloon. Polymer International, 59(3):378-383.
[66]Zhu, J., Cai, S., Suo, Z., 2010b. Resonant behavior of a membrane of a dielectric elastomer. International Journal of Solids and Structures, 47(24):3254-3262.
[67]Zhu, W.Q., 2006. Nonlinear stochastic dynamics and control in Hamiltonian formulation. ASME Applied Mechanics Reviews, 59(4):230-248.
Open peer comments: Debate/Discuss/Question/Opinion
<1>