Full Text:   <3486>

Summary:  <1794>

CLC number: TQ028.8

On-line Access: 2017-01-24

Received: 2016-04-23

Revision Accepted: 2016-11-09

Crosschecked: 2017-01-06

Cited: 0

Clicked: 4078

Citations:  Bibtex RefMan EndNote GB/T7714


Li-ping Zhu


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.2 P.138-150


Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking

Author(s):  Pei-bin Zhang, Cui-jing Liu, Jian Sun, Bao-ku Zhu, Li-ping Zhu

Affiliation(s):  MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   lpzhu@zju.edu.cn

Key Words:  Dopamine (DA), Poly(ethylene imine) (PEI), Co-deposition, Nanofiltration (NF) membranes, Cross-linking

Pei-bin Zhang, Cui-jing Liu, Jian Sun, Bao-ku Zhu, Li-ping Zhu. Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking[J]. Journal of Zhejiang University Science A, 2017, 18(2): 138-150.

@article{title="Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking",
author="Pei-bin Zhang, Cui-jing Liu, Jian Sun, Bao-ku Zhu, Li-ping Zhu",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking
%A Pei-bin Zhang
%A Cui-jing Liu
%A Jian Sun
%A Bao-ku Zhu
%A Li-ping Zhu
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 2
%P 138-150
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600308

T1 - Fabrication of composite nanofiltration membranes by dopamine-assisted poly(ethylene imine) deposition and cross-linking
A1 - Pei-bin Zhang
A1 - Cui-jing Liu
A1 - Jian Sun
A1 - Bao-ku Zhu
A1 - Li-ping Zhu
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 2
SP - 138
EP - 150
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600308

Positively charged composite nanofiltration (NF) membranes with good stability were prepared by dopamine (DA) assisted poly(ethylene imine) (PEI) deposition on a polysulfone ultrafiltration (UF) substrate followed by a cross-linking step. Attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electronic microscopy, and atom force microscopy were employed to characterize the surface chemistry and morphology of the obtained composite membranes. The DA and PEI co-deposition conditions were optimized based on knowledge of the co-deposition mechanism. The effects of the cross-linker concentration, cross-linking time, and reaction temperature on the permeation and separation properties of the prepared composite membranes were investigated in detail. Under optimized conditions, the MgCl2 rejection and permeation flux of the composite membrane reached 80.4% and 19.6 L/(m2·h), respectively (the feed was 0.01 mol/L of MgCl2 solution under a test pressure of 0.4 MPa). The rejection of various salts followed the order MgCl2≈CaCl2> MgSO4>NaCl>Na2SO4, suggesting the membranes were positively charged. The composite membranes showed good durability under alkaline aqueous conditions. This study provided new insights into the fabrication of mussel-inspired thin-film composite nanofiltration membranes.

This paper reports results of membrane modification based on dopamine for nanofiltration application. It seems that authors try to improve the membrane performance using dopamine.

多巴胺辅助聚乙烯亚胺沉积交联的复合纳滤膜 制备

创新点:1. 利用共沉积技术与交联反应成功制备了荷正电复合纳滤膜;相较于传统多巴胺改性膜,该复合膜的稳定性大大提高。2. 经过测试表征,制备得到的纳滤膜的分离尺寸属于疏松纳滤膜范围,可用于相应尺度的分离领域。
方法:1. 通过多巴胺与聚乙烯亚胺共沉积,首先实现二者的表面沉积,随后通过交联剂交联制备复合膜(图1);2. 对改性膜前后表面理化性质进行相应表征(表2和图3~6);3. 通过测试通量和截留等性能及分析相关纳滤模型,表征该复合膜分离性能(图7和8,公式(5)和(7));4. 通过长期分离测试及碱性溶液清洗,测试复合膜的稳定性和耐碱性。
结论:1. 成功制备了具有荷正电性的复合纳滤膜;2. 通过通量和截留数据拟合分析得出该膜截留尺寸在1.5 nm和2 nm之间,属于疏松纳滤膜,可用于相应尺度分离;3. 该复合膜具有良好的稳定性及耐碱性,应用范围更广。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Akbari, A., Desclaux, S., Rouch, J.C., et al., 2006. New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents. Journal of Membrane Science, 286(1-2):342-350.

[2]Bouchoux, A., Roux-De Balmann, H., Lutin, F., 2005. Nanofiltration of glucose and sodium lactate solutions. Journal of Membrane Science, 258(1-2):123-132.

[3]Bowen, W.R., Mohammad, A.W., Hilal, N., 1997. Characterisation of nanofiltration membranes for predictive purposes—use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 126(1):91-105.

[4]Chan, E.P., Lee, J.H., Chung, J.Y., et al., 2012. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films. Review of Scientific Instruments, 83(11):114102.

[5]Chen, J., Chen, X., Yin, X., et al., 2009. Bioinspired fabrication of composite pervaporation membranes with high permeation flux and structural stability. Journal of Membrane Science, 344(1-2):136-143.

[6]Cheng, C., Nie, S., Li, S., et al., 2013. Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. Journal of Materials Chemistry B, 1(3):265-275.

[7]Della Vecchia, N.F., Avolio, R., Alfè, M., et al., 2013. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials, 23(10):1331-1340.

[8]Dreyer, D.R., Miller, D.J., Freeman, B.D., et al., 2012. Elucidating the structure of poly(dopamine). Langmuir, 28(15):6428-6435.

[9]Feng, C., Xu, J., Li, M., et al., 2014. Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate. Journal of Membrane Science, 451:103-110.

[10]Ji, Y.L., An, Q.F., Zhao, Q., et al., 2012. Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance. Journal of Membrane Science, 390-391:243-253.

[11]Jiang, J.H., Zhu, L.P., Li, X.L., et al., 2010. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 364(1-2):194-202.

[12]Jiang, J.H., Zhu, L.P., Zhu, L.J., et al., 2011. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir, 27(23):14180-14187.

[13]Kang, S.M., Hwang, N.S., Yeom, J., et al., 2012. One-step multipurpose surface functionalization by adhesive catecholamine. Advanced Functional Materials, 22(14):2949-2955.

[14]Kasemset, S., Lee, A., Miller, D.J., et al., 2013. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. Journal of Membrane Science, 425-426:208-216.

[15]Lee, H., Dellatore, S.M., Miller, W.M., et al., 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849):426-430.

[16]Li, M., Xu, J., Chang, C.Y., et al., 2014. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. Journal of Membrane Science, 459:62-71.

[17]Li, X.L., Zhu, L.P., Jiang, J.H., et al., 2011a. Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese Journal of Polymer Science, 30(2):152-163 (in Chinese).

[18]Li, X.L., Zhu, L.P., Xu, Y.Y., et al., 2011b. A novel positively charged nanofiltration membrane prepared from N, N-dimethylaminoethyl methacrylate by quaternization cross-linking. Journal of Membrane Science, 374(1-2):33-42.

[19]Miller, M.D., Bruening, M.L., 2004. Controlling the nanofiltration properties of multilayer polyelectrolyte membranes through variation of film composition. Langmuir, 20(26):11545-11551.

[20]Nghiem, L.D., Schäfer, A.I., Elimelech, M., 2004. Removal of natural hormones by nanofiltration membranes  measurement, modeling, and mechanisms. Environmental Science & Technology, 38(6):1888-1896.

[21]Ouyang, L., Malaisamy, R., Bruening, M.L., 2008. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. Journal of Membrane Science, 310(1-2):76-84.

[22]Riera-Torres, M., Gutierrez-Bouzan, C., Crespi, M., 2010. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252(1-3):53-59.

[23]Saeki, D., Imanishi, M., Ohmukai, Y., et al., 2013. Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation. Journal of Membrane Science, 447:128-133.

[24]Schaep, J., Vandecasteele, C., 2001. Evaluating the charge of nanofiltration membranes. Journal of Membrane Science, 188(1):129-136.

[25]Schaep, J., van der Bruggen, B., Vandecasteele, C., et al., 1998. Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 14(1-3):155-162.

[26]Schaep, J., Vandecasteele, C., Peeters, B., et al., 1999. Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration. Journal of Membrane Science, 163(2):229-237.

[27]Singh, S., Khulbe, K.C., Matsuura, T., et al., 1998. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 142(1):111-127.

[28]Szymczyk, A., Fievet, P., 2005. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model. Journal of Membrane Science, 252(1-2):77-88.

[29]Tian, Y., Su, B., Jiang, L., 2014. Interfacial material system exhibiting superwettability. Advanced Materials, 26(40):6872-6897.

[30]van der Bruggen, B., Schaep, J., Wilms, D., et al., 2000. A comparison of models to describe the maximal retention of organic molecules in nanofiltration. Separation Science and Technology, 35(2):169-182.

[31]Vanherck, K., Vandezande, P., Aldea, S.O., et al., 2008. Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents. Journal of Membrane Science, 320(1-2):468-476.

[32]Xu, L.Q., Yang, W.J., Neoh, K.G., et al., 2010. Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules, 43(20):8336-8339.

[33]Yang, H.C., Liao, K.J., Huang, H., et al., 2014. Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2(26):10225-10230.

[34]Zeman, L.J., Zydney, A.L., 1996. Microfiltration and Ultrafiltration: Principles and Applications. Marcel Dekker, New York, USA.

[35]Zhao, N., Wang, Z., Cai, C., et al., 2014. Bioinspired materials: from low to high dimensional structure. Advanced Materials, 26(41):6994-7017.

[36]Zhou, M., Nemade, P.R., Lu, X., et al., 2007. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. Journal of the American Chemical Society, 129(31):9574-9575.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE