Full Text:   <2893>

Summary:  <2212>

CLC number: TG386

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-02-07

Cited: 0

Clicked: 4623

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang-dong Jia

http://orcid.org/0000-0001-8207-7404

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.3 P.194-211

http://doi.org/10.1631/jzus.A1600408


Study on the deformation theory of a parabolic part based on solid granules medium forming


Author(s):  Xiang-dong Jia, Chang-cai Zhao, Jian-chao Li, Liu-yang He

Affiliation(s):  MOE Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004, China

Corresponding email(s):   zhao1964@ysu.edu.cn

Key Words:  Solid granules medium, Flexible die forming, Drawing, Drawing weight, Bulging weight, Strain


Xiang-dong Jia, Chang-cai Zhao , Jian-chao Li, Liu-yang He. Study on the deformation theory of a parabolic part based on solid granules medium forming[J]. Journal of Zhejiang University Science A, 2017, 18(3): 194-211.

@article{title="Study on the deformation theory of a parabolic part based on solid granules medium forming",
author="Xiang-dong Jia, Chang-cai Zhao , Jian-chao Li, Liu-yang He",
journal="Journal of Zhejiang University Science A",
volume="18",
number="3",
pages="194-211",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600408"
}

%0 Journal Article
%T Study on the deformation theory of a parabolic part based on solid granules medium forming
%A Xiang-dong Jia
%A Chang-cai Zhao
%A Jian-chao Li
%A Liu-yang He
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 3
%P 194-211
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600408

TY - JOUR
T1 - Study on the deformation theory of a parabolic part based on solid granules medium forming
A1 - Xiang-dong Jia
A1 - Chang-cai Zhao
A1 - Jian-chao Li
A1 - Liu-yang He
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 3
SP - 194
EP - 211
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600408


Abstract: 
solid granules medium forming (SGMF), a new flexible die forming technology, uses solid granules instead of a rigid male or female die (or elastomer, liquid) for sheet metal drawing. The good fluidity and compressive capacity of a solid granules medium can improve the forming limit of complex shell parts. The sheet metal drawing process of SGMF is a compound process of drawing and bulging, which is very different from the conventional drawing process. A parabolic part is used as the research object for a study of the forming process. Two concepts, drawing weight and bulging weight, are originally proposed in the sheet metal drawing of SGMF (replacing the rigid male die), and the corresponding expressions are obtained. The computational formulas of geometrical conditions and strain in the sheet metal drawing of SGMF are established, and the radius of the strain dividing circle is obtained by calculation. The established theoretical model is applied to the research object, an aircraft part, to analyze the forming process. The results show that the proposed theory can be applied to analyze the strain in different deformation regions of SGMF. This original theory provides a new theoretical analysis for studying the sheet metal drawing of SGMF.

抛物线型零件固体颗粒介质成形变形理论研究

目的:板材固体颗粒介质成形工艺作为一种新型的软模成形技术,是采用固体颗粒代替刚性凸模或凹模(或弹性体、液体)对板料进行成形加工的工艺。固体颗粒介质板材拉深成形工艺为拉深和胀形两种变形模式的复合成形,其变形过程与传统拉深成形工艺有很大的区别。以抛物线型零件为研究对象,对其成形过程进行研究,建立固体颗粒介质板材软凸模拉深成形的几何条件和应变计算公式。
创新点:1. 首次提出了描述固体颗粒介质板材拉深成形变形机理的拉深权和胀形权的概念,并建立了相应的计算公式;2. 建立了固体颗粒介质抛物线型零件软凸模拉深成形的几何条件和应变计算公式。
方法:1. 通过对抛物线型零件固体颗粒介质拉深成形的变形过程分析(图1~3),将变形过程和成形工件的变形区进行划分;2. 将数学中权函数的思想引入到对抛物线型零件固体颗粒介质拉深成形的分析中,提出拉深权和胀形权的定义及相应表达式(公式(1)和(2));3. 通过理论推导,构建不同成形阶段抛物线型零件拉深成形过程中的应变计算式(公式(28)~(30)和公式(62a)~(62c))和壁厚计算公式(公式(31)和(63));4. 利用MATLAB编制抛物线型零件拉深成形应变计算程序(图14);5. 以某航空零件为目标零件,通过试验试制不同成形条件下不同阶段的抛物线型工件(表2和3),将理论计算壁厚与实测厚度进行对比(图19),将试验轮廓与理论计算轮廓进行对比(图21),验证分析过程中所提假设及理论计算的可行性和正确性;将试验获得成形工件的几何尺寸(表3)代入MATLAB计算程序中,对该航空零件的变形过程进行分析(图15、18、19、21和22)。
结论:1. 固体颗粒介质拉深成形过程是胀形和拉深的复合成形,通过对其变形过程分析,首次提出了拉深权和胀形权的概念,并且给出了其计算公式。成形过程中,拉深权越大,工件成形后的壁厚差越小;胀形权则正好相反。2. 利用拉深权和胀形权,建立了固体颗粒介质软凸模拉深成形变形区应变计算公式,且可以计算出应变分界圆位置半径,为分析固体颗粒介质软凸模拉深成形工艺变形过程提供了新的理论依据。3. 设置合理的成形条件、拉深权的提高和应变分界圆半径的缩小可以降低拉深成形过程中底部的过度减薄,进而提高极限成形高度。

关键词:固体颗粒介质;软模成形;拉深;拉深权;胀形权;应变

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmetoglu, M., Jiang, H., Kulukuru, S., et al., 2004. Hydroforming of sheet metal using a viscous pressure medium. Journal of Materials Processing Technology, 146(1):97-107.

[2]Cao, M.Y., Zhao, C.C., Dong, G.J., 2012. Numerical simulation on granules medium drawing process parameters of magnesium alloy sheet. Chinese Journal of Nonferrous Metals, 22(11):2992-2999 (in Chinese).

[3]Dhaiban, A.A., Soliman, M.E.S., El-Sebaie, M.G., 2014. Finite element modeling and experimental results of brass elliptic cups using a new deep drawing process through conical dies. Journal of Materials Processing Technology, 214(4):828-838.

[4]Dong, G.J., Zhao, C.C., Peng, Y.X., et al., 2015. Hot granules medium pressure forming process of AA7075 conical parts. Chinese Journal of Mechanical Engineering, 28(3):580-591.

[5]Gavas, M., Izciler, M., 2006. Design and application of blank holder system with spiral spring in deep drawing of square cups. Journal of Materials Processing Technology, 171(2):274-282.

[6]Grüner, M., Merklein, M., 2010. Numerical simulation of hydro forming at elevated temperatures with granular material used as medium compared to the real part geometry. International Journal of Material Forming, 3(S1):279-282.

[7]Gutscher, G., Wu, H.C., Ngaile, G., et al., 2004. Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test. Journal of Materials Processing Technology, 146(1):1-7.

[8]Halkaci, H.S., Turkoz, M., Dilmec, M., 2014. Enhancing formability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder. Journal of Materials Processing Technology, 214(8):1638-1646.

[9]Labergere, C., Gelin, J.C., 2012. Numerical simulation of sheet hydroforming taking into account analytical pressure and fluid flow. Journal of Materials Processing Technology, 212(10):2020-2030.

[10]Li, Y.N., Luo, M., Gerlach, J., et al., 2010. Prediction of shear-induced fracture in sheet metal forming. Journal of Materials Processing Technology, 210(14):1858-1869.

[11]Liu, B.S., Lang, L.H., Zeng, Y.S., et al., 2012. Forming characteristic of sheet hydroforming under the influence of through-thickness normal stress. Journal of Materials Processing Technology, 212(9):1875-1884.

[12]Lücke, H.U., Hartl, C., Abbey, T., 2001. Hydroforming. Journal of Materials Processing Technology, 115(1):87-91.

[13]Shulkin, L.B., Posteraro, R.A., Ahmetoglu, M.A., et al., 2000. Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal. Journal of Materials Processing Technology, 98(1):7-16.

[14]Tari, D.G., Worswick, M.J., Winkler, S., 2013. Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions. Journal of Materials Processing Technology, 213(8):1337-1347.

[15]Thiruvarudchelvan, S., Tan, M.J., 2006. A note on fluid-pressure-assisted deep drawing processes. Journal of Materials Processing Technology, 172(2):174-181.

[16]Wang, Z.J., Liu, J.G., Li, Y., 2010. Fracture prediction in non-isothermal viscous pressure bulging aluminum alloy sheet using ductile fracture criterion. Journal of Central South University of Technology, 17(3):449-453.

[17]Zhang, F.F., Li, X.F., Xu, Y.C., et al., 2015. Simulating sheet metal double-sided hydroforming by using thick shell element. Journal of Materials Processing Technology, 221:13-20.

[18]Zhao, C.C., 2005. Half-mould Forming Process for Metal Plate Material. China Patent 200510007167.1 (in Chinese).

[19]Zhao, C.C., Wang, Y.S., Li, X.D., et al., 2006. Experimental analysis of the pressure-carrying performance of solid granules medium. Journal of Plasticity Engineering, 13(2):85-88 (in Chinese).

[20]Zhao, C.C., Li, X.D., Dong, G.J., et al., 2009. Solid granules medium forming technology and its numerical simulation. Journal of Mechanical Engineering, 45(6):212-215 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE