Full Text:   <2013>

CLC number: TH161

On-line Access: 2017-09-04

Received: 2016-06-05

Revision Accepted: 2016-12-16

Crosschecked: 2017-08-15

Cited: 1

Clicked: 3877

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Krzysztof Nadolny

http://orcid.org/0000-0002-2753-2782

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.9 P.728-740

http://doi.org/10.1631/jzus.A1600416


Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys


Author(s):  Ryszard Wójcik, Krzysztof Nadolny

Affiliation(s):  Institute of Machine Tools and Production Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; more

Corresponding email(s):   krzysztof.nadolny@tu.koszalin.pl

Key Words:  Nickel-based alloys, Surface grinding, Minimum quantity lubrication, Hard-to-cut materials, Grinding force, Surface roughness


Ryszard Wójcik, Krzysztof Nadolny. Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys[J]. Journal of Zhejiang University Science A, 2017, 18(9): 728-740.

@article{title="Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys",
author="Ryszard Wójcik, Krzysztof Nadolny",
journal="Journal of Zhejiang University Science A",
volume="18",
number="9",
pages="728-740",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600416"
}

%0 Journal Article
%T Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys
%A Ryszard Wójcik
%A Krzysztof Nadolny
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 9
%P 728-740
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600416

TY - JOUR
T1 - Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys
A1 - Ryszard Wójcik
A1 - Krzysztof Nadolny
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 9
SP - 728
EP - 740
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600416


Abstract: 
This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes the features that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions, especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and the results of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influence of the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values and surface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL® alloy 600, and MONEL® alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results of the machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advantageous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to the results when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specific tangential grinding force Ft′ and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel 201 and INCONEL® alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changes of the grinding conditions within the conventionally selected zones.

不同类型磨削液微量润滑对镍基合金平面磨削的影响

目的:镍基合金是一种难加工材料,在磨削时工件表面经常会出现烧伤、弹性形变和白层。本文拟通过3种不同镍基合金工件(Nickel 201,INCONEL(r) 600和MONEL(r) 400)的平面磨削实验,研究在采用微量润滑方法进行冷却时,两种不同类型磨削液对磨削力和工件表面粗糙度的影响规律。同时,研究砂轮结构对磨削过程和磨削结果的影响。
创新点:通过实验比较2种磨削液对3种镍基合金工件磨削结果的不同影响,为在采用微量润滑方法时的磨削液合理选择提供有益借鉴,也为绿色制造、可持续生产或清洁生产等制造技术的发展提供技术支撑。
方法:1. 对每个试件表面进行多行程无火花磨削预处理,并采用浇注式冷却;2. 进行单程磨削实验(图2),并采用微量润滑方法进行冷却;3. 在磨削表面标记3个区域,比较在不同磨削液、工件材料及砂轮结构条件下,每个区域平均切向力和表面粗糙度值的变化情况。
结论:1. 磨削表面粗糙度与磨削切向力成反比,Nickel 201和INCONEL(r) 600的表现尤为明显。2.不同的镍基合金材料工件磨削时的切向力和表面粗糙度有很大不同,MONEL(r) 400获得的磨削效果最好。3. 初始单程磨削实验方法可以用来评价砂轮切入3个磨削区磨削状态的异同;不同磨削区域的磨削结果差异较大。4. Biocut 3000 磨削液可以获得比Ecocut Mikro Plus 82磨削液更好的磨削表面,但磨削力也相应增大。5. 砂轮结构的不同对磨削结果没有太大影响。

关键词:镍基合金;平面磨削;微量润滑;难加工材料;磨削力;表面粗糙度

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aurich, J.C., 2013. Improved coolant supply through slotted grinding wheel. Annals of the CIRP, 62:363-366.

[2]Chen, M., Li, X.T., Sun, F.H., et al., 2001. Studies on the grinding characteristics of directionally solidified nickel-based superalloy. Journal of Materials Processing Technology, 116(2-3):165-169.

[3]Choudhury, I.A., El-Baradie, M.A., 1997. Machining nickel base superalloys: Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 212:195-206.

[4]Fuchs Europe Schmierstoffe GmbH, 2013. Fuchs Industrial Lubricants–Innovative Lubricants Require Experienced Application Engineers. http://www.fuchs-europe.com/fileadmin/fuchs_upload/downloads/Englische_Prospekte/2013/Cutting_fluids_for_the_aerospace_sector_5-2013.pdf [Accessed on Jan. 7, 2016].

[5]Huang, Q., Ren, J.X., 1991. Surface integrity and its effects on the fatigue life of the nickel-based superalloy GH33A. International Journal of Fatigue, 13(4):233-326.

[6]Jackson, M.J., Davim, J.P., 2010. Machining with Abrasives. Springer, New York, USA.

[7]JM Precision, 2000. Machining nickel and nickel alloys (including Monel, Kovar, Invar, Inconel & Incoloy). http://www.jmprecision.co.uk/media/machiningnickelalloys.pdf [Accessed on Jan. 7, 2016].

[8]Klocke, F., 2009. Manufacturing Processes 2: Grinding, Honing, Lapping. Springer-Verlag, Berlin, Germany.

[9]Link GmbH, 2003. MicroJet®–Minimum-Quantity Lubricating Systems: a Solution to Every Application. http://www.mueller-stuttgart.de/pdf/MICROJET%20PROSPEKT%20engl.PDF [Accessed on Jan. 7, 2016].

[10]Liu, Q., Chen, X., Gindy, N., 2006. Investigation of acoustic emission signals under a simulative environment of grinding burn. International Journal of Machine Tools and Manufacture, 46:284-292.

[11]Maruda, R.W., Legutko, S., Krolczyk, G.M., et al., 2015a. An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. International Journal of Surface Science and Engineering, 9(5):452-465.

[12]Maruda, R.W., Legutko, S., Krolczyk, G.M., et al., 2015b. Influence of cooling conditions on the machining process under MQCL and MQL conditions. Tehnicki Vjesnik– Technical Gazette, 22(4):965-970.

[13]Maruda, R.W., Feldshtein, E., Legutko, S., et al., 2016. Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arabian Journal for Science and Engineering, 41(2):661-668.

[14]Molyduval, 2009. Biocut 3000. http://www.molyduval.com/index.php?module=explorer&displayAction=download&downloadFile=datenblaetter_cd/en/tds/biocut%203000.pdf [Accessed on Jan. 7, 2016].

[15]Nadolny, K., Kapłonek, W., Wojtewicz, M., et al., 2013. Effects of sulfurization of grinding wheels on internal cylindrical grinding of Titanium Grade 2®. Indian Journal of Engineering & Materials Science, 20:108-124.

[16]Nadolny, K., Sienicki, W., Wojtewicz, M., 2015. The effect upon the grinding wheel active surface condition when impregnating with non-metallic elements during internal cylindrical grinding of Titanium. Archives of Civil and Mechanical Engineering, 15(1):71-86.

[17]Neslušan, M., 2009. Grinding of Ni-based alloys with grinding wheels of high porosity. Advances in Production Engineering & Management, 4:29-36.

[18]Neslušan, M., Czán, A., 2001. Machining of Titanium and Nickel Alloys. EDIS, Žilina (in Slovak).

[19]Nickel Development Institute, 2002. Machining Nickel Alloys. Reference Book, Series N° 11 008. http://www.nickelinstitute.org/en/TechnicalLiterature/Reference%20Book%20Series/11008_MachiningNickelAlloys.aspx [Accessed on Jan. 7, 2016].

[20]Oliveira, D.J., Guermandi, L.G., Bianchi, E.C., et al., 2012. Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. Journal of Materials Processing Technology, 212:2559-2568.

[21]Osterle, W., Li, P.X., 1997. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing), 238:357-366.

[22]Pollock, T.M., Tin, S., 2006. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. Journal of Propulsion and Power, 22(2):361-374.

[23]Schlindwein, H.J., 2008. Individually set cooling lubricants. Maschine, 62(1):18-20 (in German).

[24]Special Metals Corporation, 2005. MONEL® alloy 400. http://www.specialmetals.com/documents/Monel%20alloy%20400.pdf [Accessed on Jan. 7, 2016].

[25]Special Metals Corporation, 2006. Nickel 200 & 201. http://www.specialmetals.com/documents/Nickel%20200%20&%20201.pdf [Accessed on Jan. 7, 2016].

[26]Special Metals Corporation, 2008. INCONEL® alloy 600. http://www.specialmetals.com/documents/Inconel%20alloy%20600.pdf [Accessed on Jan. 7, 2016].

[27]Tawakoli, T., Hadad, M.J., Sadeghi, M.M., 2010. Influence of oil mist parameters on minimum quantity lubrication– MQL grinding process. International Journal of Machine Tools and Manufacture, 50(6):521-531.

[28]Ulutan, D., Ozel, T., 2011. Machining induced surface integrity in titanium and nickel alloys: a review. International Journal of Machine Tools & Manufacture, 51:250-280.

[29]Webster, J.A., 1995. Selection of coolant type and application technique in grinding. Supergrind 1995–Grinding and Polishing with Superabrasives, p.205-220.

[30]Webster, J.A., 2008. In grinding, coolant application matters. Manufacturing Engineering, 140(3):171-179.

[31]Wójcik, R., Rosik, R., Świerczyński, J., 2010. Research on aerosols and their impact on reducing the cost of grinding operation. In: Gołąbczak, A., Kruszyński, B. (Eds.), Basics and Technology of Abrasive Machining. Łódź University of Technology, Łódź, Poland, p.549-559 (in Polish).

[32]Xu, X., Yu, Y., Huang, H., 2003. Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys. Wear, 255:1421-1426.

[33]Zhang, S., Li, J.F., Wang, Y.W., 2012. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production, 32:81-87.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE