Full Text:   <1836>

Summary:  <1498>

CLC number: TH161.12

On-line Access: 2017-07-04

Received: 2016-07-29

Revision Accepted: 2016-10-09

Crosschecked: 2017-06-12

Cited: 0

Clicked: 3039

Citations:  Bibtex RefMan EndNote GB/T7714


Jun Zou


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.7 P.545-552


Experimental investigation of vortex-ring cavitation

Author(s):  Chen Ji, Fang-ye Lin, Jun Zou

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   junzou@zju.edu.cn

Key Words:  Cavitation, Toroidal cavity, Oscillation period, Impinging on wall

Chen Ji, Fang-ye Lin, Jun Zou. Experimental investigation of vortex-ring cavitation[J]. Journal of Zhejiang University Science A, 2017, 18(7): 545-552.

@article{title="Experimental investigation of vortex-ring cavitation",
author="Chen Ji, Fang-ye Lin, Jun Zou",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Experimental investigation of vortex-ring cavitation
%A Chen Ji
%A Fang-ye Lin
%A Jun Zou
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 7
%P 545-552
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600537

T1 - Experimental investigation of vortex-ring cavitation
A1 - Chen Ji
A1 - Fang-ye Lin
A1 - Jun Zou
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 7
SP - 545
EP - 552
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600537

Vortex-ring cavitation occurs when the pressure inside a torus-shaped core of a vortex ring falls below the vapor pressure of the ambient liquid. By generating a vapor bubble in a rigid tube, a toroidal cavity can be produced outside the tube. The pulsation and propagation behaviors of vortex-ring cavitation are studied using a high-speed video camera and a hydrophone. The experimental results show that the cavity continues to oscillate with a period that depends heavily on the maximal cross-section radius of the cavity and circulation of the vortex flow, under the influence of the surrounding vortex flow field. It is also shown that the cross-radial oscillation of the toroidal cavity can be measured both by a high-speed camera and hydrophone. Moreover, three different methods for estimating the circulation are compared to propose an accurate model of toroidal cavity oscillation. The phenomenon of a toroidal cavity impinging on a fixed wall is also investigated.


创新点:1. 通过实验方法,比较几种不同的速度环量计算模型在环状空泡振荡控制方程中的适用性。2. 通过声学方法,得到环状空泡在撞击壁面溃灭过程中的频谱特征。
方法:1. 通过管内空泡膨胀产生高速射流;高速射流在管口处形成涡环并发生涡环空化。2. 基于高速摄像进行流体分析。
结论:1. 在管内空泡溃灭后,环状空泡以恒定速度沿管的轴向运动,且其振荡周期几乎保持不变。2. 环状空泡的振荡周期基本上满足规律:τ~R0(ρP)0.5[ln(8/ε)]0.5。3. 在空泡振荡的最小直径为特征直径;根据空心涡核模型,可以计算得到最接近实验结果的速度环量值。4. 当空泡冲击壁面时,空泡的环向直径将变大。5. 环向直径的最大扩张比α与其截面直径与环向直径的比ε相关:α~ε0.25


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Chahine, G.L., Genoux, P.F., 1983a. Collapse of a cavitating vortex ring. Journal of Fluids Engineering, 105(4):400-405.

[2]Chahine, G.L., Genoux, P.F., 1983b. Static and dynamic quilibrium of a vaporous vortex-ring. Journal de Mecanique Theorique et Appliquee, 2(5):829-857 (in French).

[3]Chahine, G.L., Johnson, V.E., Lindenmuth, W.T., et al., 1985. The use of self-resonating cavitating water jets for underwater sound generation. The Journal of the Acoustical Society of America, 77(1):113-126.

[4]Dziedzic, M., Leutheusser, H.J., 1996. An experimental study of viscous vortex rings. Experiments in Fluids, 21(5):315-324.

[5]Genoux, P.F., Chahine, G.L., 1984. Collapse of a toroidal bubble near a solid wall. ASME Cavitation and Multi-phase Flow Forum, p.69-72.

[6]Hu, L., Shen, Y.N., Chen, W.Y., et al., 2016a. Experimental investigation on submerged gas-liquid mixture injection into water through a micro-channel. International Journal of Multiphase Flow, 83:39-50.

[7]Hu, L., Liu, Q., Chen, W.Y., et al., 2016b. Normalizing study on the characteristic size of the stable cavity induced by a gas-jet penetrating into a liquid sheet. Experimental Thermal and Fluid Science, 70:228-235.

[8]Jiang, L., Ge, H., Feng, C.L., et al., 2015. Numerical simulation of underwater explosion bubble with a refined interface treatment. Science China Physics, Mechanics & Astronomy, 58(4):1-10.

[9]Johnson, V.E.Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984a. Cavitating and structured jets for mechanical bits to increase drilling rate—part I: theory and concepts. Journal of Energy Resources Technology, 106(2):282-288.

[10]Johnson, V.E.Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984b. Cavitating and structured jets for mechanical bits to increase drilling rate—part II: experimental results. Journal of Energy Resources Technology, 106(2):289-294.

[11]Lauterborn, W., Kurz, T., 2010. Physics of bubble oscillations. Reports on Progress in Physics, 73(10):106501.

[12]Shariff, K., Leonard, A., 1992. Vortex rings. Annual Review of Fluid Mechanics, 24(1):235-279.

[13]Sullivan, I.S., Niemela, J.J., Hershberger, R.E., et al., 2008. Dynamics of thin vortex rings. Journal of Fluid Mechanics, 609:319-347.

[14]Teslenko, V.S., Drozhzhin, A.P., Medvedev, R.N., 2014. Pulsation of cavitating vortex rings in water. Technical Physics Letters, 40(11):1021-1023.

[15]Walker, J.D.A., Smith, C.R., Doligalski, T.L., et al., 1987. The impact of a vortex ring on a wall. Journal of Fluid Mechanics, 181:99-140.

[16]Wang, Q.X., 2014. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. Journal of Fluid Mechanics, 745:509-536.

[17]Xu, M., Ji, C., Zou, J., et al., 2014. Particle removal by a single cavitation bubble. Science China Physics, Mechanics and Astronomy, 57(4):668-673.

[18]Xu, Y., Feng, L.H., Wang, J.J., 2013. Experimental investigation of a synthetic jet impinging on a fixed wall. Experiments in Fluids, 54:1512.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE