Full Text:   <1503>

Summary:  <1155>

CLC number: TU318

On-line Access: 2018-11-02

Received: 2017-10-07

Revision Accepted: 2018-03-09

Crosschecked: 2018-09-12

Cited: 0

Clicked: 4196

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gui-gang Tu

https://orcid.org/0000-0002-6154-9457

Chang-yu Cui

https://orcid.org/0000-0001-9163-8648

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.11 P.843-863

http://doi.org/10.1631/jzus.A1700545


A structural morphogenesis method based on a linkage mechanism system


Author(s):  Gui-gang Tu, Chang-yu Cui, Guang-chun Zhou

Affiliation(s):  School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; more

Corresponding email(s):   cuichangyu1963@hit.edu.cn

Key Words:  Morphogenesis, Elements-grouped, Linkage mechanism, Length constraint, Self-adjustment of length


Gui-gang Tu, Chang-yu Cui, Guang-chun Zhou. A structural morphogenesis method based on a linkage mechanism system[J]. Journal of Zhejiang University Science A, 2018, 19(11): 843-863.

@article{title="A structural morphogenesis method based on a linkage mechanism system",
author="Gui-gang Tu, Chang-yu Cui, Guang-chun Zhou",
journal="Journal of Zhejiang University Science A",
volume="19",
number="11",
pages="843-863",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700545"
}

%0 Journal Article
%T A structural morphogenesis method based on a linkage mechanism system
%A Gui-gang Tu
%A Chang-yu Cui
%A Guang-chun Zhou
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 11
%P 843-863
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700545

TY - JOUR
T1 - A structural morphogenesis method based on a linkage mechanism system
A1 - Gui-gang Tu
A1 - Chang-yu Cui
A1 - Guang-chun Zhou
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 11
SP - 843
EP - 863
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700545


Abstract: 
This paper presents an elements-grouped morphogenesis method for the design of grid shells based on finding the linkage mechanism system shape that corresponds to the state of minimum potential energy. This method assigns the elements to several groups according to architectural design intentions and requirements to optimize a structural shape. A shape transformation equation is derived to constrain the total length of elements in each element group in the morphogenesis process and the generalized inverse matrix theory is then used to resolve the equation. The positions of nodes are, thus, progressively updated until the system reaches the minimum potential energy state. This method is characterized by the settings of element groups, temporary elements, and temporary forces. Finally, several numerical examples illustrate the characteristics and effectiveness of the proposed method.

基于联动机构的结构形态创构方法

目的:寻找以轴力为主要传递荷载方式的单层网壳结构的多种合理形态,改善结构的受力性能,为建筑设计提供多种合理的结构形状方案.
创新点:1. 建立控制单元组长度的移形方程,并在移形方程的基础上推导基于联动机构势能最小化的结构形态创构方法. 2. 将分组方式应用于网壳结构形态创构,并通过改变分组形式获得不同的合理结构形状;临时单元与临时力的引入拓展了方法的适用范围,也为形态创构提供了新的途径.
方法:1. 将机构的单元进行分组,以单元组总长度不变作为条件建立机构移形方程;根据机构势能下降 最快的方向调整机构形状,使机构逐步达到势能最低. 2. 在同一初始模型中,通过改变临时单元、临时力以及单元组的设置来获得多种合理结构形状;通过多个数值算例说明该方法的特性. 3. 对该方法所生成的结构进行受力性能分析,验证所提方法的可行性和有效性.
结论:提出了一种适用于网壳结构的形态创构方法.该方法简单、灵活,可以通过调整临时单元、临时力以及单元组的设置,得出多种以轴力为主要传递荷载方式的合理结构形状. 可以为设计者在建筑方案设计阶段提供多种结构形状方案.

关键词:形态创构;单元分组;联动机构;长度约束;长度自调整

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Adriaenssens S, Block P, Veenendaal D, et al., 2014. Shell Structures for Architecture: Form Finding and Optimization. Routledge, New York, USA.

[2]Adriaenssens SML, Barnes MR, 2001. Tensegrity spline beam and grid shell structures. Engineering Structures, 23(1):29-36.

[3]Alic V, Persson K, 2016. Form finding with dynamic relaxation and isogeometric membrane elements. Computer Methods in Applied Mechanics and Engineering, 300: 734-747.

[4]Argyris JH, Angelopoulos T, Bichat B, 1974. A general method for the shape finding of lightweight tension structures. Computer Methods in Applied Mechanics and Engineering, 3(1):135-149.

[5]Bagrianski S, Halpern AB, 2014. Form-finding of compressive structures using prescriptive dynamic relaxation. Computers & Structures, 132:65-74.

[6]Barnes MR, 1977. Form Finding and Analysis of Tension Space Structures by Dynamic Relaxation. PhD Thesis, City University London, London, UK.

[7]Barnes MR, 1988. Form-finding and analysis of prestressed nets and membranes. Computers & Structures, 30(3):685-695.

[8]Barnes MR, 1999. Form finding and analysis of tension structures by dynamic relaxation. International Journal of Space Structures, 14(2):89-104.

[9]Barnes MR, Adriaenssens S, Krupka M, 2013. A novel torsion/bending element for dynamic relaxation modeling. Computers & Structures, 119:60-67.

[10]Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi AA, et al., 2010. Design optimization and dynamic analysis of a tensegrity-based footbridge. Engineering Structures, 32(11):3650-3659.

[11]Bel Hadj Ali N, Rhode-Barbarigos L, Smith IFC, 2011. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm. International Journal of Solids and Structures, 48(5):637-647.

[12]Bletzinger KU, Ramm E, 1999. A general finite element approach to the form finding of tensile structures by the updated reference strategy. International Journal of Space Structures, 14(2):131-145.

[13]Bletzinger KU, Wüchner R, Daoud F, et al., 2005. Computational methods for form finding and optimization of shells and membranes. Computer Methods in Applied Mechanics and Engineering, 194(30-33):3438-3452.

[14]Block P, Ochsendorf J, 2007. Thrust network analysis: a new methodology for three-dimensional equilibrium. Journal of the International Association for Shell and Spatial Structures, 48(3):167-173.

[15]Cui CY, Jiang BS, Wang YB, 2014. Node shift method for stiffness-based optimization of single-layer reticulated shells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(2):97-107.

[16]Day AS, 1965. An introduction to dynamic relaxation. The Engineer, 219(5688):218-221.

[17]Descamps B, Filomeno Coelho R, Ney L, et al., 2011. Multicriteria optimization of lightweight bridge structures with a constrained force density method. Computers & Structures, 89(3-4):277-284.

[18]Gosling PD, Lewis WJ, 1996. Optimal structural membranes —II. Form-finding of prestressed membranes using a curved quadrilateral finite element for surface definition. Computers & Structures, 61(5):885-895.

[19]Haber RB, Abel JF, 1982. Initial equilibrium solution methods for cable reinforced membranes part I—formulations. Computer Methods in Applied Mechanics and Engineering, 30(3):263-284.

[20]Hangai Y, Kawaguchi KI, 1987. Shape-finding analysis of unstable link structures. Journal of Structural and Construction Engineering, 381:56-60.

[21]Haug E, Powell GH, 1972. Analytical shape finding for cable nets. Proceedings of the IASS Pacific Symposium Part II on Tension Structures and Space Frames, p.83-92.

[22]Isler H, 1994. Concrete shells derived from experimental shapes. Structural Engineering International, 4(3):142-147.

[23]Jorquera Lucerga JJ, Armisen JM, 2012. An iterative form-finding method for antifunicular shapes in spatial arch bridges. Computers & Structures, 108-109:42-60.

[24]Kilian A, Ochsendorf J, 2005. Particle-spring systems for structural form finding. Journal of the International Association for Shell and Spatial Structures, 46(2):77-84.

[25]Maurin B, Motro R, 1998. The surface stress density method as a form-finding tool for tensile membranes. Engineering Structures, 20(8):712-719.

[26]Maurin B, Motro R, 2004. Concrete shells form-finding with surface stress density method. Journal of Structural Engineering, 130(6):961-968.

[27]Moored KW, Bart-Smith H, 2009. Investigation of clustered actuation in tensegrity structures. International Journal of Solids and Structures, 46(17):3272-3281.

[28]Pauletti RMO, Pimenta PM, 2008. The natural force density method for the shape finding of taut structures. Computer Methods in Applied Mechanics and Engineering, 197(49-50):4419-4428.

[29]Sánchez J, Serna MÁ, Morer P, 2007. A multi-step force-density method and surface-fitting approach for the preliminary shape design of tensile structures. Engineering Structures, 29(8):1966-1976.

[30]Schek HJ, 1974. The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 3(1):115-134.

[31]Shan J, Lan T, 1994. On dynamic relaxation and its application to static analysis of tension structures. Journal of Southeast University, 24(3):94-98 (in Chinese).

[32]Siev A, Eidelman J, 1964. Stress analysis of prestressed suspended roofs. Journal of the Structural Division, 90(4):103-121.

[33]Xie YM, Steven GP, 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49(5):885-896.

[34]Zhang L, Lu MK, Zhang HW, et al., 2015. Geometrically nonlinear elasto-plastic analysis of clustered tensegrity based on the co-rotational approach. International Journal of Mechanical Sciences, 93:154-165.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE