Full Text:   <2138>

Summary:  <1647>

Suppl. Mater.: 

CLC number: O469

On-line Access: 2019-08-05

Received: 2019-02-15

Revision Accepted: 2019-07-21

Crosschecked: 2019-07-25

Cited: 0

Clicked: 3225

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-hong Li

https://orcid.org/0000-0003-2450-4476

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.8 P.614-626

http://doi.org/10.1631/jzus.A1900050


Mechanical, acoustical, and optical properties of several Li-Si alloys: a first-principles study


Author(s):  Xiao-hong Li, Hong-ling Cui, Rui-zhou Zhang

Affiliation(s):  College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China; more

Corresponding email(s):   lorna639@yeah.net

Key Words:  Mechanical properties, Thermal conductivity, Lithium-ion batteries, Elastic anisotropy, First-principles calculations


Xiao-hong Li, Hong-ling Cui, Rui-zhou Zhang. Mechanical, acoustical, and optical properties of several Li-Si alloys: a first-principles study[J]. Journal of Zhejiang University Science A, 2019, 20(8): 614-626.

@article{title="Mechanical, acoustical, and optical properties of several Li-Si alloys: a first-principles study",
author="Xiao-hong Li, Hong-ling Cui, Rui-zhou Zhang",
journal="Journal of Zhejiang University Science A",
volume="20",
number="8",
pages="614-626",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900050"
}

%0 Journal Article
%T Mechanical, acoustical, and optical properties of several Li-Si alloys: a first-principles study
%A Xiao-hong Li
%A Hong-ling Cui
%A Rui-zhou Zhang
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 8
%P 614-626
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900050

TY - JOUR
T1 - Mechanical, acoustical, and optical properties of several Li-Si alloys: a first-principles study
A1 - Xiao-hong Li
A1 - Hong-ling Cui
A1 - Rui-zhou Zhang
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 8
SP - 614
EP - 626
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900050


Abstract: 
Owing to their excellent theoretical capacity, Li-Si alloys have been extensively investigated as potential lithium-ion batteries. Knowledge of the mechanical, acoustical, and optical properties of Li-Si alloys is important in order to improve battery performance. In the present study, we calculated the mechanical, acoustical, and optical properties of several Li-Si alloys theoretically. Our investigation confirms the mechanical stability of these Li-Si alloys. With increasing lithium content, Li-Si alloys become increasingly vulnerable to shape deformation as the number of Si-Si bonds decreases. The analysis of elastic moduli shows that the bulk modulus increases with the increase of lithium contents. Li22Si5 has the strongest anisotropic Young’s modulus. The sequence of degree of anisotropic Young’s modulus is Li22Si5>Li15Si4>LiSi>Li17Si4>Li12Si7>Li13Si4. From an analysis of the anisotropy of acoustic velocity, the transverse velocities are shown to be less than the corresponding longitudinal acoustic velocities. The longitudinal wave of the cubic system is the fastest along the [111] direction, while it is the fastest along the [001] direction for the orthorhombic system and the [010] direction for the tetragonal system. In addition, all the studied Li-Si alloys have relatively low thermal conductivities and show a higher anisotropy when photon energies are lower than 20 eV. We conclude that the studied Li-Si alloys are promising dielectric materials.

Overall, it is a well-written manuscript and systematically presents a comparison of mechanical and acoustical properties of a variety of Li-Si alloys. The authors have done extensive studies on various properties of Li-Si alloys, which is very useful for battery community.

锂硅合金的力学、声学及光学性质的第一性原理研究

概要:锂硅合金作为潜在的锂离子电池已被广泛研究. 了解锂硅合金的力学、声学和光学性质对于改进电池的性能非常重要. 本文从理论上研究了几种锂硅合金的一系列特性. 研究表明,这些锂硅合金具有力学稳定性. 随着锂浓度的增加,锂硅合金中Si-Si键减少,从而使其越来越容易变形. 弹性模量的分析表明,随着锂浓度的增加,体模量增加,且Li22Si5的杨氏模量各向异性最强. 杨氏模量各向异性强度的次序为:Li22Si5>Li15Si4> LiSi>Li17Si4>Li12Si7>Li13Si4. 从声速的各向异性分析得知,横向声速小于相应的纵向声速. 立方体系的纵波在[111]方向最快,正交体系的纵波在[001]方向最快,而四方晶系的纵波在[010]方向最快. 所研究的锂硅合金的导热性较低,且当光子能量小于20 eV时,显示出较高的各向异性.
关键词:力学特性; 导热性; 锂离子电池; 弹性各向异性; 第一性原理计算

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anderson OL, 1963. A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7):909-917.

[2]Born M, 1940. On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2):160-172.

[3]Braga MH, Dębski A, Gąsior W, 2014. Li-Si phase diagram: enthalpy of mixing, thermodynamic stability, and coherent assessment. Journal of Alloys and Compounds, 616: 581-593.

[4]Cahill DG, Watson SK, Pohl RO, 1992. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10):6131-6140.

[5]Chen XQ, Niu HY, Li DZ, et al., 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9):1275-1281.

[6]Chen XW, Yu XB, 2012. Electronic structure and initial dehydrogenation mechanism of M(BH4)2·2NH3 (M=Mg, Ca, and Zn):a first-principles investigation. The Journal of Physical Chemistry C, 116(22):11900-11906.

[7]Cheng YT, Verbrugge MW, 2010. Application of Hasselman’s crack propagation model to insertion electrodes. Electrochemical and Solid-State Letters, 13(9):A128-A131.

[8]Chevrier VL, Zwanziger JW, Dahn JR, 2009. First principles studies of silicon as a negative electrode material for lithium-ion batteries. Canadian Journal of Physics, 87(6):625-632.

[9]Chevrier VL, Zwanziger JW, Dahn JR, 2010. First principles study of Li-Si crystalline phases: charge transfer, electronic structure, and lattice vibrations. Journal of Alloys and Compounds, 496(1-2):25-36.

[10]Clarke DR, 2003. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163-164:67-74.

[11]Cui ZW, Gao F, Cui ZH, et al., 2012. A second nearest-neighbor embedded atom method interatomic potential for Li–Si alloys. Journal of Power Sources, 207:150-159.

[12]Debye P, 1912. Zur Theorie der spezifischen Wärmen. Annalen Der Physik, 344(14):789-839 (in German).

[13]Furthmüller J, Käckell P, Bechstedt F, et al., 2000. Extreme softening of Vanderbilt pseudopotentials: general rules and case studies of first-row and d-electron elements. Physical Review B, 61(7):4576-4587.

[14]Guechi N, Bouhemadou A, Khenata R, et al., 2014. Structural, elastic, electronic and optical properties of the newly synthesized monoclinic Zintl phase BaIn2P2. Solid State Science, 29:12-23.

[15]Hill R, 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5):349-354.

[16]Key B, Bhattacharyya R, Morcrette M, et al., 2009. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. Journal of the American Chemical Society, 131(26):9239-9249.

[17]Kim H, Chou CY, Ekerdt JG, et al., 2011. Structure and properties of Li−Si alloys: a first-principles study. The Journal of Physical Chemistry C, 115(5):2514-2521.

[18]McDowell MT, Lee SW, Harris JT, et al., 2013. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Letters, 13(2):758-764.

[19]Miao NH, Sa BS, Zhou J, et al., 2011. Theoretical investigation on the transition-metal borides with Ta3B4-type structure: a class of hard and refractory materials. Computational Materials Science, 50(4):1559-1566.

[20]Min SH, Jo MR, Song DH, et al., 2016. High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics. Electrochimica Acta, 220:511-516.

[21]Mott NF, Jones H, 1958. The Theory of the Properties of Metals and Alloys. Dover Publications, New York, USA, p.65-68.

[22]Mouhat F, Coudert FX, 2014. Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22):224104.

[23]Newnham RE, 2005. Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press, New York, USA, p.210-214.

[24]Nye FJ, 1985. Physical Properties of Crystals. Oxford University Press, Oxford, UK, p.153-155.

[25]Obrovac MN, Christensen L, 2004. Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid-State Letters, 7(5):A93-A96.

[26]Perdew JP, Burke K, Ernzerhof M, 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18):3865-3868.

[27]Pfrommer BG, Côté M, Louie SG, et al., 1997. Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, 131(1):233-240.

[28]Pitzer KS, 1939. Corresponding states for perfect liquids. The Journal of Chemical Physics, 7(8):583-590.

[29]Pugh SF, 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367):823-843.

[30]Rahman MA, Rahaman MZ, Rahman MA, 2016. The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study. International Journal of Modern Physics B, 30(27):1650199.

[31]Ranganathan SI, Ostoja-Starzewski M, 2008. Universal elastic anisotropy index. Physical Review Letters, 101(5):055504-4.

[32]Ratchford JB, Schuster BE, Crawford BA, et al., 2011. Young’s modulus of polycrystalline Li22Si5. Journal of Power Sources, 196(18):7747-7749.

[33]Ratchford JB, Crawford BA, Wolfenstine J, et al., 2012. Young’s modulus of polycrystalline Li12Si7 using nanoindentation testing. Journal of Power Sources, 211: 1-3.

[34]Ravindran P, Fast L, Korzhavyi PA, et al., 1998. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. Journal of Applied Physics, 84(9):4891-4901.

[35]Reuss A, 1929. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):49-58 (in German).

[36]Savin A, Flad HJ, Flad J, et al., 1992. On the bonding in carbosilanes. Angewandte Chemie International Edition, 31(2):185-187.

[37]Schwalbe S, Gruber T, Trepte K, et al., 2017. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides. Computational Materials Science, 134:48-57.

[38]Shenoy VB, Johari P, Qi Y, 2010. Elastic softening of amorphous and crystalline Li-Si phases with increasing Li concentration: a first-principles study. Journal of Power Sources, 195(19):6825-6830.

[39]Sin’ko GV, Smirnov NA, 2002. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. Journal of Physics: Condensed Matter, 14(29):6989-7005.

[40]Su X, Wu QL, Li JC, et al., 2014. Silicon-based nanomaterials for lithium-ion batteries: a review. Advanced Energy Materials, 4(1):1300882.

[41]Sun L, Gao YM, Xiao B, et al., 2013. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. Journal of Alloys and Compounds, 579:457-467.

[42]Sun L, Su TT, Xu L, et al., 2016. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes. Physical Chemistry Chemical Physics, 18(3):1521-1525.

[43]Tipton WW, Bealing CR, Mathew K, et al., 2013. Structures, phase stabilities, and electrical potentials of Li–Si battery anode materials. Physical Review B, 87(18):184114.

[44]Voigt W, 1928. Lehrbuch der Kristallphysik: Teubner-Leipzig. Macmillan, New York, USA, p.112-115.

[45]Wang YX, Liu B, Li QY, et al., 2015. Lithium and lithium ion batteries for applications in microelectronic devices: a review. Journal of Power Sources, 286:330-345.

[46]Wu H, Zheng GY, Liu N, et al., 2012. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Letters, 12(2):904-909.

[47]Xu K, von Cresce A, 2011. Interfacing electrolytes with electrodes in Li ion batteries. Journal of Materials Chemistry, 21(27):9849-9864.

[48]Zeilinger M, Benson D, Häussermann U, et al., 2013. Single crystal growth and thermodynamic stability of Li17Si4. Chemistry of Materials, 25(9):1960-1967.

[49]Zeng MX, Wang RN, Tang BY, et al., 2012. Elastic and electronic properties of tI26-type Mg12RE (RE=Ce, Pr and Nd) phases. Modelling and Simulation in Materials Science and Engineering, 20(3):035018.

[50]Zeng ZD, Liu N, Zeng QS, et al., 2013. Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries. Journal of Power Sources, 242:732-735.

[51]Zhang SC, Du ZJ, Lin RX, et al., 2010. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Advanced Materials, 22(47):5378-5382.

[52]Zhang WJ, 2011. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 196(1):13-24.

[53]Zhao KJ, Wang WL, Gregoire J, et al., 2011. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Letters, 11(7):2962-2967.

[54]Zhao XY, Wang JL, Luo H, et al., 2016. A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(2):155-162.

[55]Zheng JM, Engelhard MH, Mei DH, et al., 2017. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2(3):17012.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE