Full Text:   <1137>

Summary:  <417>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-10-21

Cited: 0

Clicked: 1207

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Anna E. SMYGALINA

https://orcid.org/0000-0002-4792-6498

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.10 P.838-844

http://doi.org/10.1631/jzus.A2200217


Regimes of near-stoichiometric hydrogen/air combustion under reciprocating engine conditions


Author(s):  Anna E. SMYGALINA, Alexey D. KIVERIN

Affiliation(s):  Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia; more

Corresponding email(s):   smygalina-anna@yandex.ru

Key Words:  Hydrogen/air combustion, Reciprocating engine, Knock


Share this article to: More <<< Previous Article|

Anna E. SMYGALINA, Alexey D. KIVERIN. Regimes of near-stoichiometric hydrogen/air combustion under reciprocating engine conditions[J]. Journal of Zhejiang University Science A, 2022, 23(10): 838-844.

@article{title="Regimes of near-stoichiometric hydrogen/air combustion under reciprocating engine conditions",
author="Anna E. SMYGALINA, Alexey D. KIVERIN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="10",
pages="838-844",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200217"
}

%0 Journal Article
%T Regimes of near-stoichiometric hydrogen/air combustion under reciprocating engine conditions
%A Anna E. SMYGALINA
%A Alexey D. KIVERIN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 10
%P 838-844
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200217

TY - JOUR
T1 - Regimes of near-stoichiometric hydrogen/air combustion under reciprocating engine conditions
A1 - Anna E. SMYGALINA
A1 - Alexey D. KIVERIN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 10
SP - 838
EP - 844
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200217


Abstract: 
We consider combustion regimes with hydrogen/air mixtures of stoichiometric (29.5% of hydrogen by volume) and sub-stoichiometric (less than 29.5%) compositions in the combustion chamber with parameters presented in the electronic supplementary materials. Pressure histories obtained numerically for combustion regimes of hydrogen/air mixtures of different compositions (29.5%, 26.0%, 24.0%, 22.0%, 20.0%, and 18.0%) are presented in Fig. 1a. Analysis of the data enables three characteristic combustion regimes to be distinguished: (1) detonation, observed for the stoichiometric mixture and originating spontaneously as a result of ignition of the compressed mixture, (2) a fast combustion regime, distinctively observed in the 26.0% (as well as in the 24.0% and 22.0%) mixture where the pressure history is characterized by pressure oscillations of relatively high amplitude and frequency, and (3) a slow combustion regime, realized for 18.0% hydrogen content in the mixture, where the pressure history is characterized by pressure oscillations of relatively low amplitude.

往复式发动机条件下近化学计量的氢气/空气燃烧模式

作者:Anna E. SMYGALINA, Alexey D. KIVERIN
机构:俄罗斯科学院高温联合研究所,俄罗斯莫斯科,125412
目的:采用与火花点火往复式发动机相关的初始条件和参数,对近化学计量氢气/空气混合物在圆柱形燃烧室内运动活塞下的燃烧进行数值研究,并特别研究以强压振荡为特征的氢气燃烧模式是否可以被视为爆震。
创新点:1.明确考虑了在高含氢量的火花点火发动机条件下氢气/空气混合物的燃烧情况。2.根据初始含氢量的不同,燃烧可分为爆燃、快速燃烧和缓慢燃烧三种模式。3.研究证明了以高幅高频压力振荡为特征的快速燃烧模式不能被视为爆震。
方法:1.采用"粗颗粒"数值方法求解二维圆柱坐标系下的纳维-斯托克斯气体动力方程组。2.模拟往复式发动机条件下可燃混合气体的动力学状态。
结论:从输出参数(压力振幅全程的快速傅里叶变换)来看,近化学计量的氢气/空气燃烧与爆震相似。然而,尾气区域的温度不足以使该区域发生自燃,因此不能将该燃烧模式视为爆震。

关键词:往复式发动机;燃烧模式;爆震

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BalatM, 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 33(15):‍‍4013-4029. https:‍//doi.org/10.1016/j.ijhydene.2008.05.047

[2]FilimonovaEA, DobrovolskayaAS, BocharovAN, et al., 2020. Formation of combustion wave in lean propane-air mixture with a non-uniform chemical reactivity initiated by nanosecond streamer discharges in the HCCI engine. Combustion and Flame, 215:‍401-416. https:‍//doi.org/10.1016/j.combustflame.2020.01.029

[3]HeHB, YaoDW, WuF, 2017. A reduced and optimized kinetic mechanism for coke oven gas as a clean alternative vehicle fuel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(7):‍511-530. https:‍//doi.org/10.1631/jzus.A1600636

[4]HeywoodJB, 1988. Internal Combustion Engines Fundamentals. McGraw-Hill, Inc., New York, USA, p.450-490.

[5]IvanovMF, KiverinAD, SmygalinaAE, et al., 2018. The use of hydrogen as a fuel for engines in the energy cycle of remote production facilities. Technical Physics, 63(1):‍148-151. https:‍//doi.org/10.1134/S1063784218010140

[6]KiverinA, YakovenkoI, 2021. Thermo-acoustic instability in the process of flame propagation and transition to detonation. Acta Astronautica, 181:‍649-654. https:‍//doi.org/10.1016/j.actaastro.2021.01.042

[7]LeiZD, ChenZW, YangXQ, et al., 2020. Operational mode transition in a rotating detonation engine. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(9):‍721-733. https:‍//doi.org/10.1631/jzus.A1900349

[8]LifshitzEM, LandauLD, 1987. Fluid Mechanics:‍Volume 6. Butterworth-Heinemann, Oxford, UK.

[9]LiuWJ, SunL, LiZL, et al., 2020. Trends and future challenges in hydrogen production and storage research. Environmental Science and Pollution Research, 27(25):‍31092-31104. https:‍//doi.org/10.1007/s11356-020-09470-0

[10]PanJY, MaGB, WeiHQ, et al., 2018. Strong knocking characteristics under compression ignition conditions with high pressures. Combustion Science and Technology, 190(10):‍1786-1803. https:‍//doi.org/10.1080/00102202.2018.1472087

[11]QiYL, WangZ, WangJX, et al., 2015. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock. Combustion and Flame, 162(11):‍4119-4128. https:‍//doi.org/10.1016/j.combustflame.2015.08.016

[12]SzwajaS, Grab-RogalinskiK, 2009. Hydrogen combustion in a compression ignition diesel engine. International Journal of Hydrogen Energy, 34(10):‍4413-4421. https:‍//doi.org/10.1016/j.ijhydene.2009.03.020

[13]SzwajaS, NaberJD, 2013. Dual nature of hydrogen combustion knock. International Journal of Hydrogen Energy, 38(28):‍12489-12496. https:‍//doi.org/10.1016/j.ijhydene.2013.07.036

[14]SzwajaS, BhandaryKR, NaberJD, 2007. Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine. International Journal of Hydrogen Energy, 32(18):‍5076-5087. https:‍//doi.org/10.1016/j.ijhydene.2007.07.063

[15]WangZ, LiuH, ReitzRD, 2017. Knocking combustion in spark-ignition engines. Progress in Energy and Combustion Science, 61:‍78-112. https:‍//doi.org/10.1016/j.pecs.2017.03.004

[16]WeiHQ, GaoDZ, ZhouL, et al., 2017. Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate. Combustion and Flame, 178:‍277-285. https:‍//doi.org/10.1016/j.combustflame.2017.01.011

[17]YangF, ZhangHQ, ChenZ, et al., 2013. Interaction of pressure wave and propagating flame during knock. International Journal of Hydrogen Energy, 38(35):‍15510-15519. https:‍//doi.org/10.1016/j.ijhydene.2013.09.078

[18]YuH, ChenZ, 2015. End-gas autoignition and detonation development in a closed chamber. Combustion and Flame, 162(11):‍4102-4111. https:‍//doi.org/10.1016/j.combustflame.2015.08.018

[19]ZhaoJF, ZhouL, ZhongLJ, et al., 2019. Experimental investigation of the stochastic nature of end-gas autoignition with detonation development in confined combustion chamber. Combustion and Flame, 210:‍324-338. https:‍//doi.org/10.1016/j.combustflame.2019.08.040

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE