Full Text:   <573>

Summary:  <209>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-08-18

Received: 2022-09-14

Revision Accepted: 2023-01-23

Crosschecked: 2023-08-18

Cited: 0

Clicked: 719

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jia-wang CHEN

https://orcid.org/0000-0002-6351-0062

Yongqiang GE

https://orcid.org/0000-0002-7045-6711

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.8 P.692-709

http://doi.org/10.1631/jzus.A2200442


Research on the sampling performance of a new bionic gravity sampler


Author(s):  Yongqiang GE, Jiamin HE, Jin GUO, Peihao ZhANG, Hao WANG, Ziqiang REN, Xiaoling LE, Ying WANG, Yuhong WANG, Jiawang CHEN

Affiliation(s):  Ocean College, Zhejiang University, Zhoushan 316021, China; more

Corresponding email(s):   arwang@zju.edu.cn

Key Words:  Deep-sea gravity sampling, Bionic sampler tube (BST), Non-smooth surface, Sampling performance, Drag reduction


Yongqiang GE, Jiamin HE, Jin GUO, Peihao ZhANG, Hao WANG, Ziqiang REN, Xiaoling LE, Ying WANG, Yuhong WANG, Jiawang CHEN. Research on the sampling performance of a new bionic gravity sampler[J]. Journal of Zhejiang University Science A, 2023, 24(8): 692-709.

@article{title="Research on the sampling performance of a new bionic gravity sampler",
author="Yongqiang GE, Jiamin HE, Jin GUO, Peihao ZhANG, Hao WANG, Ziqiang REN, Xiaoling LE, Ying WANG, Yuhong WANG, Jiawang CHEN",
journal="Journal of Zhejiang University Science A",
volume="24",
number="8",
pages="692-709",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200442"
}

%0 Journal Article
%T Research on the sampling performance of a new bionic gravity sampler
%A Yongqiang GE
%A Jiamin HE
%A Jin GUO
%A Peihao ZhANG
%A Hao WANG
%A Ziqiang REN
%A Xiaoling LE
%A Ying WANG
%A Yuhong WANG
%A Jiawang CHEN
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 8
%P 692-709
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200442

TY - JOUR
T1 - Research on the sampling performance of a new bionic gravity sampler
A1 - Yongqiang GE
A1 - Jiamin HE
A1 - Jin GUO
A1 - Peihao ZhANG
A1 - Hao WANG
A1 - Ziqiang REN
A1 - Xiaoling LE
A1 - Ying WANG
A1 - Yuhong WANG
A1 - Jiawang CHEN
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 8
SP - 692
EP - 709
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200442


Abstract: 
Gravity sampling is of vital importance for sampling seabed sediments and understanding submarine sedimentary environments and resources. In this study, a new bionic sampler tube (BST) with non-smooth surface for low-disturbance and rapid sampling is presented. The BST with depressions and swellings on its surface was designed on the model of the non-smooth surface of the dung beetle. Sufficient theoretical calculations, numerical simulations, and experimental tests were carried out to study its sampling performance. The penetration depth, sample length, and frictional drag of the sampler tube were calculated. The finite element model and the coupled Eulerian-Lagrangian (CEL) method were used to analyze and compare its sampling performance. Laboratory and field gravity sampling tests were conducted and the results demonstrated the advantages of the BST in improving sampling performance and in reducing adhesion and drag.

新型仿生重力采样器采样性能的研究

作者:葛勇强1,何家敏1,郭进1, 2,张培豪1,王豪1,2,任自强1,2,乐晓凌1,王荧1,2,王玉红1,陈家旺1,2,3
机构:1浙江大学,海洋学院,中国舟山,316021;2浙江大学,海南研究院,中国三亚,572025;3海洋感知技术与装备教育部工程研究中心,中国舟山,316021
目的:重力取样方法对实现海底沉积物取样和了解海底沉积环境和资源至关重要。本文提出一种能够实现低干扰快速取样的非光滑表面的仿生取样管,其表面具有凹凸结构,并对其取样性能(贯入深度、取样长度、贯入阻力和取样率)展开详细讨论和研究。
创新点:1.基于理想理想弹塑性材料的孔扩张模型和史密斯波动方程推导取样器贯入过程的力学特征;2.建立数值模拟框架,模拟重力取样过程,并研究取样管参数对重力取样效果的影响;3.设计仿生非光滑重力取样管,通过数值模拟研究非光滑形态参数的减粘降阻特性;4.建立试验模型,开展室内及潮滩取样器贯入及取样试验。
方法:1.通过实验分析,对比常规重力取样管和仿生取样管的取样效果(图8和9);2.通过理论推导,建立重力取样管和周围沉积物的力学关系(公式(3)~(7));3.通过仿真模拟,运用耦合的欧拉-拉格朗日方法在重力取样器取样过程中,对比不同参数的取样器的取样性能,验证所提仿生非光滑重力取样器的低扰动和快速取样性(图4~6)。
结论:1.重力取样器的取样效果与取样管的刀口倾角、壁厚以及长径比相关,通过数值模拟得到了不同参数对取样效果的影响;2.非光滑表面对仿生取样管的采样性能有明显促进作用,通过数值模拟验证了凹坑比凸包的促进效果更好;3.运用参数分析方法,对非光滑表面形态特征进行单一变量分析,得到了较优的参数组合。

关键词:重力取样器;仿生取样管;非光滑表面;取样性能;减阻

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ChangXH, ZhangL, YangY, et al., 2015. Analysis on sampling disturbance of deep sediment in the Yellow River reservoir. Yellow River, 37(6):18-21 (in Chinese).

[2]ChenJW, FanW, BinghamB, et al., 2013. A long gravity-piston corer developed for seafloor gas hydrate coring utilizing an in situ pressure-retained method. Energies, 6(7):3353-3372.

[3]ChenXD, ZhangXH, LuXB, et al., 2016. Numerical study on the deformation of soil stratum and vertical wells with gas hydrate dissociation. Acta Mechanica Sinica, 32(5):‍905-914.

[4]ChengT, YuZY, ZhengJJ, et al., 2018. Improvement of the cavity expansion theory for the measurement of strain softening in over consolidated saturated clay. Measurement, 119:156-166.

[5]ChirendeB, LiJQ, WenLG, et al., 2010. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing. Science China Technological Sciences, 53(11):2960-2965.

[6]GMGS (Guangzhou Marine Geological Survey Bureau of the Ministry of Geology and Mineral Resources), 1993. Geological Investigation in the Pacific. Geology Press, Beijing, China, p.7-14 (in Chinese).

[7]CurryW, BrodaJ, KeigwinL, et al., 2008. A new long coring system for R/V Knorr. Eos, Transactions American Geophysical Union, 89(15):142-143.

[8]DengSQ, 2004. The Mechanism of Reducing Soil Adhesion and the Design of Bionic Plow. PhD Thesis, Jilin University, Changchun, China(in Chinese).

[9]FrancisTJG, LeeYDE, 2000. Determination of in situ sediment shear strength from advanced piston corer pullout forces. Marine Georesources & Geotechnology, 18(4):295-314.

[10]GeYQ, ChenJW, ZhangPH, et al., 2022. A novel technique for seabed strata deformation in situ monitoring. Frontiers in Marine Science, 9:987319.

[11]MagagnoliM, 2017. A new coring method in deep water. Marine Georesources & Geotechnology, 35(4):496-503.

[12]QinHW, CaiZ, HuHM, et al., 2016. Numerical analysis of gravity coring using coupled Eulerian-Lagrangian method and a new corer. Marine Georesources & Geotechnology, 34(5):403-408.

[13]RenLQ, HanZW, LiJJ, et al., 2002. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil. Journal of Terramechanics, 39(4):221-230.

[14]RenLQ, DengSQ, WangJC, et al., 2004. Design principles of the non-smooth surface of bionic plow moldboard. Journal of Bionic Engineering, 1(1):9-19.

[15]RenZQ, ChenJW, HeJM, et al., 2020. Research and analysis of 30-m gravity piston corer for natural gas hydrate. Marine Technology Society Journal, 54(2):57-68.

[16]RoudbenehZH, VakilianKA, 2020. Experimental investigation of bionic soil-engaging blades for soil adhesion reduction by simulating Armadillidium vulgare body surface. INMATEH Agricultural Engineering, 60(1):99-106.

[17]RuanHL, ChenYL, CaiJP, et al., 2017. Optimization and application of a sampling drilling tool for ultra-deepwater drilling in South China Sea. China Offshore Oil and Gas, 29(1):105-109 (in Chinese).

[18]SmithI, 2021. Smith’s Elements of Soil Mechanics, 10th Edition. Wiley-Blackwell, Edinburgh, UK, p.373-459.

[19]SoniP, SalokheVM, NakashimaH, 2007. Modification of a mouldboard plough surface using arrays of polyethylene protuberances. Journal of Terramechanics, 44(6):411-422.

[20]StaubachP, MachačekJ, SkowronekJ, et al., 2021. Vibratory pile driving in water-saturated sand: back-analysis of model tests using a hydro-mechanically coupled CEL method. Soils and Foundations, 61(1):144-159.

[21]WangB, LuanZD, ZhangX, et al., 2018. A novel monitorable and controlable long-coring system with maximum operating depth 6 000 m. Marina Sciences, 42(7):‍25-31 (in Chinese).

[22]WangM, 2016. Key Technology Research of Submarine Self-Propelled Tracked Trencher. PhD Thesis, Shanghai Jiao Tong University, Shanghai, China (in Chinese).

[23]YeY, WangRJ, TuXX, et al., 2005. Paleoclimatic and paleoenvironmental records in the core sediments from the eastern Pacific Ocean. Acta Oceanologica Sinica, 27(3):170-175.

[24]ZhangXH, LuXB, ShiYH, et al., 2015. Study on the mechanical properties of hydrate-bearing silty clay. Marine and Petroleum Geology, 67:72-80.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE