Full Text:   <647>

Summary:  <127>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-07-20

Received: 2022-09-24

Revision Accepted: 2022-12-29

Crosschecked: 2023-07-20

Cited: 0

Clicked: 648

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yizhou SUN

https://orcid.org/0000-0002-2553-352X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.7 P.569-583

http://doi.org/10.1631/jzus.A2200446


Monotonic uplift behavior of anchored pier foundations in soil overlying rock


Author(s):  Yizhou SUN, Honglei SUN, Chong TANG, Yuanqiang CAI, Feng PAN

Affiliation(s):  College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   sunhonglei@zju.edu.cn

Key Words:  Uplift capacity, Anchored pier foundation, Belled pier, Rock anchor, Uplift mobilization coefficient (UMC)


Yizhou SUN, Honglei SUN, Chong TANG, Yuanqiang CAI, Feng PAN. Monotonic uplift behavior of anchored pier foundations in soil overlying rock[J]. Journal of Zhejiang University Science A, 2023, 24(7): 569-583.

@article{title="Monotonic uplift behavior of anchored pier foundations in soil overlying rock",
author="Yizhou SUN, Honglei SUN, Chong TANG, Yuanqiang CAI, Feng PAN",
journal="Journal of Zhejiang University Science A",
volume="24",
number="7",
pages="569-583",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200446"
}

%0 Journal Article
%T Monotonic uplift behavior of anchored pier foundations in soil overlying rock
%A Yizhou SUN
%A Honglei SUN
%A Chong TANG
%A Yuanqiang CAI
%A Feng PAN
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 7
%P 569-583
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200446

TY - JOUR
T1 - Monotonic uplift behavior of anchored pier foundations in soil overlying rock
A1 - Yizhou SUN
A1 - Honglei SUN
A1 - Chong TANG
A1 - Yuanqiang CAI
A1 - Feng PAN
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 7
SP - 569
EP - 583
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200446


Abstract: 
Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas. However, there are soil layers with a certain thickness on the rocks in these mountainous areas, and the utilization of those soil layers is a problem worthy of attention in foundation construction. Considering construction- and cost-related factors, traditional single-form foundations built on such sites often cannot provide sufficient resistance against uplift. Therefore, an anchored pier foundation composed of anchors and belled piers, specifically constructed for such conditions, can be invaluable in practice. This paper introduces an experimental and analytical study to investigate the uplift capacity and the uplift mobilization coefficients (UMCs) of the anchored pier foundation. In this study, three in-situ monotonic pullout tests were carried out to analyze the load‍–‍displacement characteristics, axial force distribution, load transfer mechanism, and failure mechanism. A hyperbolic model is used to fit the load–displacement curves and to reveal the asynchrony of the ultimate limit states (ULSs) of the anchor group and the belled pier. Based on the results, the uplift capacity can be calculated by the UMCs and the anchor group and pier uplift capacities. Finally, combined with the estimation of the deformation modulus of the soil and rock, the verification calculation of the uplift capacity and UMC was carried out on the test results from different anchored pier foundations.

上覆土层岩石锚墩基础单调上拔承载特性研究

作者:孙义舟1,孙宏磊2,唐冲3,蔡袁强2,潘峰4
机构:1浙江大学,建筑工程学院,中国杭州,310058;2浙江工业大学,土木工程学院,中国杭州,310014;3大连理工大学,海岸和近海工程国家重点实验室,中国大连,116024;4中国能源建设集团浙江省电力设计院有限公司,中国杭州,310012
目的:山区广泛存在上覆土层下卧岩层的地质情况。在基础工程建设上,为了满足抗拔和下压承载力要求,在这种场地采用传统单一形式的挖孔桩基础往往需要嵌入岩层,施工难度大,且经济性差,而采用岩石群锚基础又会导致土层大开挖,浪费土体承载力,且破坏环境。因此,一种由墩基础和群锚基础组成的锚墩基础被提出。在土层中采用墩基础、在岩层中补充群锚基础的方式,适用于山区"上土下岩"地质。该方式不仅能满足承载要求、优化传力机制,且施工难度小、经济性好。然而,锚墩基础属于新型基础,目前关于其上拔承载机理的研究还较少。本文旨在通过三个全尺寸锚墩基础现场单调上拔试验,分析承载机理,探究破坏模式,并提出承载力和承载发挥系数计算方法,为工程应用提供参考。
创新点:1.通过分析现场试验结果,提出锚墩基础上拔承载传力机理和破坏模式;2.基于荷载传递微分方程和变形协调,提出锚墩基础上拔承载发挥系数计算方法。
方法:1.通过试验结果分析,得到锚墩基础上拔承载力-位移曲线,确定极限承载状态和服役极限状态,并基于切线法确定抗拔承载力;2.通过现场试验现象分析,结合国内外已有桩基础、墩基础、群锚基础的研究结论,提出锚墩基础传力机理和上拔承载极限状态破坏模式;3.通过理论推导,基于荷载传递微分方程和变形协调,提出锚墩基础上拔承载发挥系数k值的计算方法,并结合本研究现场试验结果和国内外已发表的类似基础试验结果,验证方法的可行性和有效性。
结论:1.锚墩的抗拔承载力主要由墩和群锚基础两部分提供;2.率先达到极限抗拔承载力的部分是锚墩基础服役极限状态的控制因素;3.锚墩基础在上拔承载极限状态的破坏模式是墩和群锚基础的破坏模式组合;4.可根据地质条件对锚墩基础的设计进行灵活调整,且设计应包括荷载分担分析,以确定服役极限状态和设计抗拔承载力;5.通过将地质条件和工况代入本文所提理论方法计算得到的承载发挥系数与实测结果吻合度较好,可为锚墩基础的抗拔承载力计算和设计提供参考。

关键词:抗拔承载力;锚墩基础;扩底墩;岩石锚杆;上拔承载发挥系数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ASTM (American Society for Testing and Materials), 2013. Standard Test Methods for Deep Foundations Under Static Axial Tensile Load, ASTM D3689/D3689M-07(2013)e1. ASTM, USA.

[2]ASTM (American Society for Testing and Materials), 2017a. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM D2487-17e1. ASTM, USA.

[3]ASTM (American Society for Testing and Materials), 2017b. Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core, ASTM D6032/D6032M-17. ASTM, USA.

[4]ASTM (American Society for Testing and Materials), 2019. Standard Guides for Using Rock-Mass Classification Systems for Engineering Purposes, ASTM D5878-19. ASTM, USA.

[5](British Standards Institution)BSI, 2013. Execution of Special Geotechnical Works–Ground Anchors, BS EN 1537:2013. BSI, UK.

[6]CaiY, EsakiT, JiangYJ, 2004. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling. Tunnelling and Underground Space Technology, 19(6):607-618.

[7]CastelliF, MaugeriM, MottaE, 1991. Analisi non lineare del cedimento di un Palo Singolo. Rivista Italiana di Geotecnica, p.115-135 (in Italian).

[8]ChengYF, LuXL, DingSJ, et al., 2012. Experimental and computational research on the uplift of composite foundation of belled pier and rock anchor in transmission line engineering. Electric Power Construction, 33(3):‍6-10 (in Chinese).

[9]ChinFK, 1970. Estimation of the ultimate load of piles from tests not carried to failure. Proceedings of the 2nd Southeast Asian Conference on Soil Engineering, p.81-92.

[10]ChowYK, 1986. Analysis of vertically loaded pile groups. International Journal for Numerical and Analytical Methods in Geomechanics, 10(1):59-72.

[11]DasBM, 2017. Shallow Foundations: Bearing Capacity and Settlement. 3rd Edition. CRC Press, Boca Raton, USA.

[12]FabrisC, SchweigerHF, PulkoB, et al., 2021. Numerical simulation of a ground anchor pullout test monitored with fiber optic sensors. Journal of Geotechnical and Geoenvironmental Engineering, 147(2):04020163.

[13]HarrisDE, MadabhushiGSP, 2015. Uplift capacity of an under-reamed pile foundation. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168(6):‍526-538.

[14]HiranyA, KulhawyFH, 1988. Conduct and Interpretation of Load Tests on Drilled Shaft Foundations: Volume 1, Detailed Guidelines. Technical Report No. EPRI-EL-5915-Vol.1, Electric Power Research Institute, Palo Alto, USA.

[15]HondaT, HiraiY, SatoE, 2011. Uplift capacity of belled and multi-belled piles in dense sand. Soils and Foundations, 51(3):483-496.

[16]IEEE (Institute of Electrical and Electronics Engineers), 2001. IEEE Guide for Transmission Structure Foundation Design and Testing, IEEE Std 691-2001. IEEE, USA.

[17]IsmaelNF, RadhakrishnaHS, KlymTW, 1979. Uplift capacity of rock anchor groups. IEEE Transactions on Power Apparatus and Systems, 98(5):1653-1658.

[18]JiaYZ, WangMQ, ZhangJ, et al., 2014. The numerical simulation analysis of transmission lines new composite type foundation. Applied Mechanics and Materials, 459:641-645.

[19]KimHK, ChoNJ, 2012. A design method to incur ductile failure of rock anchors subjected to tensile loads. Electronic Journal of Geotechnical Engineering, 17:2737-2746.

[20]KulhawyFH, 2015. Discussion of “instrumented static load test on rock-socketed micropile” by Hoyoung Seo, Monica Prezzi, and Rodrigo Salgado. Journal of Geotechnical and Geoenvironmental Engineering, 141(6):07015002.

[21]KulhawyFH, HiranyA, 1989. Interpretation of load tests on drilled shafts—part 2: axial uplift. Foundation Engineering: Current Principles and Practices, p.1150-1159.

[22]LiLC, ZhengMY, LiuX, et al., 2022. Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation. Computers and Geotechnics, 144:104635.

[23]MaSQ, NemcikJ, AzizN, et al., 2016. Numerical modeling of fully grouted rockbolts reaching free-end slip. International Journal of Geomechanics, 16(1):04015020.

[24]MaTH, LiCJ, LuZM, et al., 2015. Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China. Geomorphology, 245:193-206.

[25]MarchettiS, CrappsDK, 1981. Flat Dilatometer Manual. GPE Inc, Gainesville, Florida, USA.

[26]MeyerhofGG, AdamsJI, 1968. The ultimate uplift capacity of foundations. Canadian Geotechnical Journal, 5(4):225-244.

[27]PachecoMP, DanzigerFAB, PintoCP, 2008. Design of shallow foundations under tensile loading for transmission line towers: an overview. Engineering Geology, 101(3-4):226-235.

[28]ParkJ, QiuT, KimY, 2013. Field and laboratory investigation of pullout resistance of steel anchors in rock. Journal of Geotechnical and Geoenvironmental Engineering, 139(12):2219-2224.

[29]PhoonKK, 2006. Modeling and simulation of stochastic data. GeoCongress 2006, p.1-17.

[30]QianZZ, LuXL, TongRM, 2014. Uplift load‍–‍movement response of bell pier foundations in Gobi gravel. Proceedings of the Institution of Civil Engineers‍-‍Geotechnical Engineering, 167(4):380-389.

[31]QianZZ, LuXL, HanX, et al., 2015. Interpretation of uplift load tests on belled piers in Gobi gravel. Canadian Geotechnical Journal, 52(7):992-998.

[32]RandolphMF, 1978. A Theoretical Study of the Performance of Piles. PhD Thesis, University of Cambridge, Cambridge, UK.

[33]SerranoA, OlallaC, 1999. Tensile resistance of rock anchors. International Journal of Rock Mechanics and Mining Sciences, 36(4):449-474.

[34]SunYZ, PanK, TangC, et al., 2022. Field experimental study on cyclic uplift behavior of anchored pier foundations. Acta Geotechnica, 17(10):4419-4434.

[35]TangC, PhoonKK, 2018. Statistics of model factors and consideration in reliability-based design of axially loaded helical piles. Journal of Geotechnical and Geoenvironmental Engineering, 144(8):04018050.

[36]WangG, KasaliG, SitarN, 2011. Static and dynamic axial response of drilled piers. I: field tests. Journal of Geotechnical and Geoenvironmental Engineering, 137(12):‍1133-1142.

[37]WuWB, YangZJ, LiuX, et al., 2022. Horizontal dynamic response of pile in unsaturated soil considering its construction disturbance effect. Ocean Engineering, 245:110483.

[38]ZhangQQ, FengRF, XuZH, et al., 2019. Evaluation of ultimate pullout capacity of anchor cables embedded in rock using a unified rupture shape model. Geotechnical and Geological Engineering, 37(4):2625-2637.

[39]ZhangYP, JiangGS, WuWB, et al., 2022. Analytical solution for distributed torsional low strain integrity test for pipe pile. International Journal for Numerical and Analytical Methods in Geomechanics, 46(1):47-67.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE