Full Text:   <606>

CLC number: 

On-line Access: 2023-01-20

Received: 2022-12-19

Revision Accepted: 2022-12-21

Crosschecked: 2023-02-01

Cited: 0

Clicked: 637

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhen-yu Yin

https://orcid.org/0000-0003-4154-7304

Qi ZHANG

https://orcid.org/0000-0002-4637-6308

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.1 P.1-5

http://doi.org/10.1631/jzus.A22MMMiG


Multiscale multiphysics modeling in geotechnical engineering


Author(s):  Zhenyu YIN, Qi ZHANG, Farid LAOUAFA

Affiliation(s):  Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; more

Corresponding email(s):   zhenyu.yin@polyu.edu.hk, q7zhang@polyu.edu.hk, farid.laouafa@ineris.fr

Key Words: 


Share this article to: More |Next Article >>>

Zhenyu YIN, Qi ZHANG, Farid LAOUAFA. Multiscale multiphysics modeling in geotechnical engineering[J]. Journal of Zhejiang University Science A, 2023, 24(1): 1-5.

@article{title="Multiscale multiphysics modeling in geotechnical engineering",
author="Zhenyu YIN, Qi ZHANG, Farid LAOUAFA",
journal="Journal of Zhejiang University Science A",
volume="24",
number="1",
pages="1-5",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A22MMMiG"
}

%0 Journal Article
%T Multiscale multiphysics modeling in geotechnical engineering
%A Zhenyu YIN
%A Qi ZHANG
%A Farid LAOUAFA
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 1
%P 1-5
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A22MMMiG

TY - JOUR
T1 - Multiscale multiphysics modeling in geotechnical engineering
A1 - Zhenyu YIN
A1 - Qi ZHANG
A1 - Farid LAOUAFA
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 1
SP - 1
EP - 5
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A22MMMiG


Abstract: 
For geotechnical engineering, numerous applications involve multiscale and multiphysics processes, such as internal erosion, hydraulic fracturing, energy piles, municipal waste disposal, production from unconventional oil and gas reservoirs, heat stimulation and depressurization of natural gas hydrate formation, pavement subjected to heating-cooling cycles, contaminant transport, and CO2 sequestration. In the literature, the terminology "multiphysics" always implies two or more physical fields in the so-called thermo-hydro-mechanical-chemical-bio-electrical coupling. Furthermore, the spatial scale of interest may range from the nanoscale to the microscale for material characterization purposes, and to hundreds of kilometers for geological and reservoir engineering applications. The time scale can also range from nano-seconds to several hundreds or thousands of years. Benefitted from the sustained development of computing power and of sophisticated equipment manufacturing, numerical simulations and multiscale laboratory testing are widespread in modern geomechanics. For example, constitutive theories that address suction and temperature dependences, field equations and poromechanical constants considering poro-thermo-chemo-elasticity or multiple porosity , and advanced numerical schemes such as the multiscale finite element method-finite volume method (FEM-FVM) have been successfully developed. Moreover, this research field has attracted more attention in recent years.

岩土工程中的多场多尺度模拟

作者:尹振宇1,张琦1,Farid LAOUAFA2
机构:1香港理工大学,土木及环境工程学系,中国香港;2国家工业环境与风险研究所(INERIS),法国韦尔讷伊昂阿拉特,60550
概要:在岩土工程领域,许多应用都涉及到多尺度和多物理场,例如内部侵蚀、水力压裂、能源桩、城市垃圾处理、非常规油气藏的生产、天然气水合物的热激法和降压法开采、路面的冻融循环、放射性废物处理、污染物运移和二氧化碳封存等等。在文献中,这些多物理场通常可能包括以下两个或者两个以上方面:固体变形、流体流动扩散、热传导和热对流、化学/生物反应、电场等等。此外,所研究的空间尺度可以从纳米级到微米级到数百公里级,时间尺度也可以从纳秒到数百或数千年不等。近些年来,受益于计算能力的持续发展和对精密设备制造的大量投资,数值模拟和多尺度实验室测试已成为地质力学及其相关领域的主流方法。科学家们为了求解多尺度和多物理场过程,已经开发并成功应用了不同的本构理论、控制方程模型、数值离散方法、求解器等等。为此,本专题收集在该研究领域具有代表性的研究成果,涵盖用计算流体动力学和离散元法进行多层土的潜蚀模拟、裂缝变形滞回曲线对二氧化碳吞吐的影响、盐碱岩和石膏岩的溶解、射孔围岩水力压裂的起裂过程这四个方面。我们希望通过本专题,能帮助读者加强对各个研究领域的理解,进一步推动多场多尺度问题的应用和发展。

关键词:多场耦合;岩土工程

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BennettKC, BerlaLA, NixWD, et al., 2015. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotechnica, 10(1):1-14.

[2]BorjaRI, YinQ, ZhaoY, 2020. Cam-Clay plasticity. Part IX: on the anisotropy, heterogeneity, and viscoplasticity of shale. Computer Methods in Applied Mechanics and Engineering, 360:112695.

[3]ChengAHD, 2016. Poroelasticity. Springer, Switzerland.

[4]CoussyO, 2004. Poromechanics. John Wiley & Sons, Ltd., Chichester, UK.

[5]DurlofskyLJ, 2005. Upscaling and gridding of fine scale geological models for flow simulation. Proceedings of the 8th International Forum on Reservoir Simulation, p.1-59.

[6]JinYF, YinZY, 2022. Two-phase PFEM with stable nodal integration for large deformation hydromechanical coupled geotechnical problems. Computer Methods in Applied Mechanics and Engineering, 392:114660.

[7]LaouafaF, GuoJW, QuintardM, 2023. Modelling and applications of dissolution of rocks in geoengineering. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(1):20-36.

[8]LiKQ, LiDQ, LiuY, 2020. Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method. International Journal of Heat and Mass Transfer, 151:119383.

[9]LiuGZ, DaiJC, WangP, et al., 2022. Analysis of the breakage parameters of railway ballast based on the discrete element method. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), in press.

[10]LiuHY, 2018. Wing-crack initiation angle: a new maximum tangential stress criterion by considering T-stress. Engineering Fracture Mechanics, 199:380-391.

[11]LiuYJ, YinZY, WangLZ, et al., 2021. A coupled CFD-DEM investigation of internal erosion considering suspension flow. Canadian Geotechnical Journal, 58(9):1411-1425.

[12]LiuYX, BorjaRI, 2022. Time scales in the primary and secondary compression of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 46(8):1383-1408.

[13]LuoH, LaouafaF, GuoJ, et al., 2014. Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. International Journal for Numerical and Analytical Methods in Geomechanics, 38(15):1600-1616.

[14]MøynerO, LieKA, 2016. A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. Journal of Computational Physics, 304:46-71.

[15]QianJG, ZhouC, YinZY, et al., 2021. Investigating the effect of particle angularity on suffusion of gap-graded soil using coupled CFD-DEM. Computers and Geotechnics, 139:104383.

[16]QiaoYF, TuttolomondoA, LuXB, et al., 2021. A generalized water retention model with soil fabric evolution. Geomechanics for Energy and the Environment, 25:100205.

[17]ShaoJL, ZhangQ, WuXT, et al., 2020. Investigation on the water flow evolution in a filled fracture under seepage-induced erosion. Water, 12(11):3188.

[18]SunX, LuoH, SogaK, 2018. A coupled thermal–hydraulic–mechanical‍–‍chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(8):600-623.

[19]WangP, GeY, WangT, et al., 2023. CFD-DEM modelling of suffusion in multi-layer soils with different fines contents and impermeable zones. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(1):6-19.

[20]WangZY, ZhangQ, ZhangWQ, 2022a. A novel collaborative study of abnormal roof water inrush in coal seam mining based on strata separation and wing crack initiation. Engineering Failure Analysis, 142:106762.

[21]WangZY, JinYF, YinZY, et al., 2022b. A novel coupled NS-PFEM with stable nodal integration and polynomial pressure projection for geotechnical problems. International Journal for Numerical and Analytical Methods in Geomechanics, 46(13):2535-2560.

[22]YanX, HuangZQ, YaoJ, et al., 2018. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE Journal, 23(4):1412-1437.

[23]YanX, HuangZQ, ZhangQ, et al., 2020. Numerical investigation of the effect of partially propped fracture closure on gas production in fractured shale reservoirs. Energies, 13(20):5339.

[24]YanX, SunH, HuangZQ, et al., 2021. Hierarchical modeling of hydromechanical coupling in fractured shale gas reservoirs with multiple porosity scales. Energy & Fuels, 35(7):5758-5776.

[25]YanX, LiuPY, HuangZQ, et al., 2023. Effect of hydraulic fracture deformation hysteresis on CO2 huff-n-puff performance in shale gas reservoirs. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(1):‍37-55.

[26]YangJ, YinZY, LaouafaF, et al., 2020. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(8):1200-1218.

[27]YangJ, YinZY, LiuYJ, 2022. Multiphysics modelling of backfill grouting in sandy soils during TBM tunnelling. Acta Geotechnica, in press.

[28]ZhangPF, XuXG, HuaYJ, et al., 2022. Effects of the outlet pressure on two-phase slug flow distribution uniformity in a multi-branch microchannel. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(1):68-82.

[29]ZhangQ, BorjaRI, 2021. Poroelastic coefficients for anisotropic single and double porosity media. Acta Geotechnica, 16(10):3013-3025.

[30]ZhangQ, YanX, LiZH, 2022a. A mathematical framework for multiphase poromechanics in multiple porosity media. Computers and Geotechnics, 146:104728.

[31]ZhangQ, WangZY, YinZY, et al., 2022b. A novel stabilized NS-FEM formulation for anisotropic double porosity media. Computer Methods in Applied Mechanics and Engineering, 401:115666.

[32]ZhangY, HouSH, MeiSH, et al., 2023. FVM-based numerical simulation method for hydraulic fracture initiation in rock around a perforation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(1):‍56-63.

[33]ZhuQY, ZhaoTY, ZhuangPZ, 2021. Thermal strain response of saturated clays in 1D condition. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(3):182-187.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE