Full Text:   <620>

CLC number: 

On-line Access: 2022-11-28

Received: 2022-09-09

Revision Accepted: 2022-09-29

Crosschecked: 2022-11-28

Cited: 0

Clicked: 833

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhen-yu Yin

https://orcid.org/0000-0003-4154-7304

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.11 P.845-849

http://doi.org/10.1631/jzus.A22PMTGE


Physical model testing in geotechnical engineering


Author(s):  Zhen-yu YIN, Han-lin WANG, Xue-yu GENG

Affiliation(s):  Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; more

Corresponding email(s):   zhenyu.yin@polyu.edu.hk, wanghanlin@hnu.edu.cn, xueyu.geng@warwick.ac.uk

Key Words: 


Share this article to: More |Next Article >>>

Zhen-yu YIN, Han-lin WANG, Xue-yu GENG. Physical model testing in geotechnical engineering[J]. Journal of Zhejiang University Science A, 2022, 23(11): 845-849.

@article{title="Physical model testing in geotechnical engineering",
author="Zhen-yu YIN, Han-lin WANG, Xue-yu GENG",
journal="Journal of Zhejiang University Science A",
volume="23",
number="11",
pages="845-849",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A22PMTGE"
}

%0 Journal Article
%T Physical model testing in geotechnical engineering
%A Zhen-yu YIN
%A Han-lin WANG
%A Xue-yu GENG
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 11
%P 845-849
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A22PMTGE

TY - JOUR
T1 - Physical model testing in geotechnical engineering
A1 - Zhen-yu YIN
A1 - Han-lin WANG
A1 - Xue-yu GENG
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 11
SP - 845
EP - 849
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A22PMTGE


Abstract: 
Several characteristics of natural soils complicate the relationship between their mechanical behaviour and geotechnical construction and maintenance in the field. These characteristics include the presence of three phases (solid particle, water, and air), particle constitutions of various minerals (such as quartz, kaolinite, and montmorillonite), and an exceptionally wide range of particle size from μm-scale (clay particles smaller than 2 μm) to 100-mm scale (such as some gravels and pebbles), with complicated inter-particle contact distributions. Field or in-situ testing is the most reliable way to reveal the real conditions for geotechnical engineering (Chen et al., 2021; Xue et al., 2021). However, field testing is sometimes not easy or even not realistic to perform because of resource shortages, time limitations, and difficult operability. To overcome these issues and to reproduce the mechanical or thermo-hydro-mechanical-chemical (THMC) coupled behaviours of geotechnical structures, physical model testing is an efficient and reasonable approach, widely used by academics and engineers around the world (Wang et al., 2018; Guo and He, 2020; Bian et al., 2021; Lei et al., 2021; Tang et al., 2022).

岩土工程物理模型试验

作者:尹振宇1,王瀚霖2,3,4,耿雪玉5
机构:1. 香港理工大学,土木及环境工程学系,中国香港;2. 湖南大学,地下空间先进技术研究中心,中国长沙,410082;3. 湖南大学,建筑安全与节能教育部重点实验室,中国长沙,410082;4. 湖南大学,土木工程学院,中国长沙,410082;5. 华威大学,工程学院,英国考文垂,CV4 7AL
概要:土的三相组成(土颗粒、水和空气)、土颗粒由多种矿物成分构成(比如石英、高岭石和蒙脱石等)以及土颗粒粒径从微米级跨度到100毫米级决定了土的复杂性,从而造成了岩土工程结构设计、建造及维护的复杂性。为了复原现场岩土结构的复杂多场特性,物理模型试验是一种有效、合理且被广泛认可的方法。与现场测试相比,物理模型试验具有高还原度、低价格和高可操作性等优势,同时可充分考虑众多影响因素对实际工况的影响。为此,本专辑收集了在该研究领域具有代表性的研究成果,介绍了多个利用物理模型试验揭示复杂岩土问题机理以及基于试验结果提出设计方法和建议的最新研究进展,涵盖了交通基础设施、盾构掘进、侵蚀、冻土和地震灾害等多个复杂岩土工程问题。希望能加深读者对各个研究领域的理解,以及进一步推动物理模型试验在岩土工程中的应用和发展。

关键词:复杂岩土问题;物理模型试验

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BianXC, FuL, ZhaoC, et al., 2021. Pile foundation of high-speed railway undergoing repeated groundwater reductions. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(4):277-295.

[2]ChangJ, LiuJK, LiYL, 2022. Frozen sand‍–‍concrete interface direct shear behavior under constant normal load and constant normal height boundary. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):917-932.

[3]ChenRP, LiuQW, WangHL, et al., 2021. Performance of geosynthetic-reinforced pile-supported embankment on soft marine deposit. Geotechnical Engineering, 174(6):627-644.

[4]GuoJ, HeJX, 2020. Dynamic response analysis of ship-bridge collisions experiment. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(7):525-534.

[5]LeiHY, HuY, LiuJJ, et al., 2021. Consolidation behavior of Tianjin dredged clay using two air-booster vacuum preloading methods. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(2):147-164.

[6]PengCY, ChenRP, WangJF, et al., 2022. Field investigation into the performance of pipe pile in soft clay under static and cyclic axial loads. Canadian Geotechnical Journal, 59(8):1474-1486.

[7]RenFF, HuangQQ, GengXY, et al., 2022. Influence of groundwater-level changes on the seismic response of geosynthetic-reinforced soil retaining walls. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):850-862.

[8]SuY, HanB, DuanJY, et al., 2022. Effects of water content, coarse grain content, and deviator stress amplitude on the resilient modulus of a fine/coarse soil mixture subjected to long-term cyclic loading. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), in press.

[9]TangXW, LinWK, ZouY, et al., 2022. Experimental study of the bearing capacity of a drainage pipe pile under vacuum consolidation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(8):639-651.

[10]TuWB, HuangMS, GuXQ, 2020. Dynamic behavior of laterally loaded caisson foundations based on different cushion types: an experimental and theoretical study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(7):565-579.

[11]van EekelenSJM, BezuijenA, van TolAF, 2013. An analytical model for arching in piled embankments. Geotextiles and Geomembranes, 39:78-102.

[12]WangHL, ChenRP, 2019. Estimating static and dynamic stresses in geosynthetic-reinforced pile-supported track-bed under train moving loads. Journal of Geotechnical and Geoenvironmental Engineering, 145(7):04019029.

[13]WangHL, ChenRP, QiS, et al., 2018. Long-term performance of pile-supported ballastless track-bed at various water levels. Journal of Geotechnical and Geoenvironmental Engineering, 144(6):04018035.

[14]WangHL, ChenRP, ChengW, et al., 2019. Full-scale model study on variations of soil stress in geosynthetic-reinforced pile-supported track bed with water level change and cyclic loading. Canadian Geotechnical Journal, 56(1):60-68.

[15]WangSJ, JiangHG, WangZB, et al., 2022. Evaluation of heavy roller compaction on a large thickness layer of subgrade with full-scale field experiments. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):933-944.

[16]WeiM, LuoQ, FengGS, et al., 2022. Shaking table tests on a cantilever retaining wall with reinforced and unreinforced backfill. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):900-916.

[17]XuP, PengP, WeiRH, et al., 2022. Model test of the mechanism underpinning water-and-mud inrush disasters during tunnel excavation in sandstone and slate interbedded Presinian strata. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):882-899.

[18]XueYG, NingZX, QiuDH, et al., 2021. A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(3):165-181.

[19]ZhangDM, BuXH, PangJ, et al., 2022. Soil effect on the bearing capacity of a double-lining structure under internal water pressure. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):863-881.

[20]ZhengG, TongJB, ZhangTQ, et al., 2022. Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(11):945-954.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE